RSS-Feed abonnieren
DOI: 10.1055/s-0033-1351075
A New Bis-Labdanic Diterpene from the Rhizomes of Alpinia pahangensis
Publikationsverlauf
received 12. Juni 2013
revised 03. Oktober 2013
accepted 19. Oktober 2013
Publikationsdatum:
19. Dezember 2013 (online)
Abstract
The rhizomes of Alpinia pahangensis yielded a new bis-labdanic diterpene for which the name pahangensin C (1) was proposed along with twelve known analogues (2–13). The structure of 1 was elucidated via spectroscopic methods including 1D and 2D NMR techniques and LCMS-IT-TOF analysis. Compounds 2 and 12 were isolated for the first time from the genus Alpinia. This is the second occurrence of compounds 2 and 12 in the Zingiberaceae family. Selected analogues exhibited moderate to strong inhibitory activity against Staphylococcus aureus and Bacillus cereus.
Key words
Alpinia pahangensis - Zingiberaceae - bis-labdanic diterpene - labdane diterpene - pahangensin C-
References
- 1 Awang K, Ibrahim H, Syamsir DR, Mohtar M, Mat Ali R, Mohamad Ali NA. Chemical constituents and antimicrobial activity of the leaf and rhizome oils of Alpinia pahangensis Ridl., an endemic wild ginger from Peninsular Malaysia. Chem Biodivers 2011; 8: 668-673
- 2 Zhang GJ, Li YH, Jiang JD, Yu SS, Qu J, Ma SG, Liu YB, Yu DQ. Anti-coxsackie virus B diterpenes from the roots of Illcium jiadifengpi . Tetrahedron 2013; 69: 1017-1023
- 3 Salae AW, Boonnak N. Obtusinones D and E, linear and angular fused dimeric icetexane diterpenenoids from Premna obtusifolia roots. Tetrahedron Lett 2013;
- 4 Galli B, Gasparrini F, Lanzotti V, Misiti D, Riccio R, Villani C, He GF, Ma ZW, Yin WF. Grandione, a new heptacyclic dimeric diterpene from Torreya grandis Fort. Tetrahedron 1999; 55: 11385-11394
- 5 Nakatani N, Kikuzaki H, Yamaji H, Yoshio K, Kitora C, Okada K, Padolina WG. Labdane diterpenes from the rhizomes of Hedychium coronarium . Phytochemistry 1994; 37: 1383-1388
- 6 Xu HX, Dong H, Sim KY. Labdane diterpenes from Alpinia zerumbet . Phytochemistry 1996; 42: 149-151
- 7 Kong LY, Qin MJ, Niwa M. Diterpenoids from rhizomes of Alpinia calcarata . J Nat Prod 2000; 63: 939-942
- 8 Chimnoi N, Pisutjaroenpong S, Ngiwsara L, Dechtrirut D, Chokchaichamnankit D, Khunnawutmanotham N, Chulabhorn M, Techasakul S. Labdane diterpenes from the rhizomes of Hedychium coronarium . Nat Prod Res 2008; 22: 1255-1262
- 9 Matsuda H, Morikawa T, Sakamoto Y, Toguchida I, Yoshikawa M. Labdane-type diterpenes with inhibitory effects on increase in vascular permeability and nitric oxide production from Hedychium coronarium . Bioorg Med Chem Lett 2002; 10: 2527-2534
- 10 Akiyama K, Kikuzaki H, Aoki T, Okuda A, Lajis NH, Nakatani NJ. Terpenoids and a diarylheptanoid from Zingiber ottensii . J Nat Prod 2006; 69: 1637-1640
- 11 Tane P, Akam MT, Tsopmo A, Ndi CP, Sterner O. Two labdane diterpenoids and a seco-tetranortriterpenoid from Turreanthus africanus . Phytochemistry 2004; 65: 3083-3087
- 12 Chokchaisiri R, Chaneiam N, Svasti S, Fucharoen S, Vadolas J, Suksamrarn A. Labdane diterpenes from the aerial parts of Curcuma comosa enhance fetal hemoglobin production in an erythroid cell line. J Nat Prod 2010; 73: 724-728
- 13 Suresh G, Reddy PP, Babu KS, Shaik TB, Kalivendi SV. Two new cytotoxic labdane diterpenes from the rhizomes of Hedychium coronarium . Bioorg Med Chem Lett 2010; 20: 7544-7548
- 14 Itokawa H, Yoshimoto S, Morita H. Diterpenes from the rhizomes of Alpinia formosana . Phytochemistry 1988; 27: 435-438
- 15 Ngo KS, Brown GD. Stilbenes, monoterpenes, diarylheptanoids, labdanes and chalcones from Alpinia katsumadai . Phytochemistry 1998; 47: 1117-1123
- 16 Ali ZC, Okpekon T, Roblot F, Bories C, Cardao M, Julian JC, Poupon E, Champy P. Labdane diterpenoids from Aframomum sceptrum: NMR study and antiparasitic activities. Phytochem Lett 2011; 4: 240-244
- 17 Boukouvalas J, Wang JX. Structure revision and synthesis of a novel labdane diterpenoid from Zingiber ottensii . Org Lett 2008; 10: 3397-3399
- 18 Chareonkla A, Pohmakotr M, Reutrakul V, Yoosook C, Kasisit J, Napaswad C, Tuchinda P. A new diarylheptanoid from the rhizomes of Zingiber mekongense . Fitoterapia 2011; 82: 534-538
- 19 Singh S, Gray A, Waterman PG. 14,15,16-Trinorlabda-8(17),11-(E)-dien-13-al: A trinorlabdane diterpene from the rhizome of Hedychium coronarium . Nat Prod Lett 1993; 3: 163
- 20 Sandri IG, Zacaria J, Fracaro F, Delamare APL, Echeverrigaray S. Antimicrobial activity of the essential oils of Brazilian species of the genus Cunila against food-borne pathogens and spoiling bacteria. Food Chem 2007; 103: 823-828
- 21 Tyagi AK, Malik A. Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chem 2011; 126: 228-235
- 22 Vagionas K, Graikou K, Ngassapa O, Runyoro D, Chinou I. Composition and antimicrobial activity of the essential oils of the Satureja species growing in Tanzania. Food Chem 2007; 103: 319-324
- 23 Bajpai VK, Sharma A, Baek KH. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control 2013; 32: 582-590
- 24 Burt S. Essential oils: their antibacterial properties and potential applications in food – a review. Int J Food Microbiol 2004; 94: 223-253
- 25 Rashid S, Rather MA, Shah WA, Bhat BA. Chemical composition, antimicrobial, cytotoxic and antioxidant activities of the essential oil of Artemisia indica Willd. Food Chem 2013; 138: 693-700
- 26 Eloff JN. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med 1998; 64: 711-713