Anästhesiol Intensivmed Notfallmed Schmerzther 2013; 48(07/08): 454-462
DOI: 10.1055/s-0033-1352490
Fachwissen
Anästhesiologie & Intensivmedizin
© Georg Thieme Verlag Stuttgart · New York

Antifibrinolytika und Blutgerinnung in der Kinderchirurgie – Was ist anders als beim erwachsenen Patienten?

Hemostasis and antifibrinolytic therapy in major pediatric surgery
Ehrenfried Schindler
,
Hans-Jörg Hertfelder
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
08. August 2013 (online)

Zusammenfassung

Das System der Blutgerinnung ist altersabhängig unterschiedlich bei Kindern im Vergleich zu Erwachsenen. Bedeutsam ist dieser Unterschied insbesondere bei Kindern unter sechs Monaten. Die Konzentrationen von Gerinnungsfaktoren und Inhibitoren weisen im Blut bei Kindern eine Altersabhängigkeit auf. Das bedeutet auch, dass sich bekannte Referenzwerte für Erwachsene für Blutgerinnungsparameter nicht auf alle Altersgruppen übertragen lassen. Sobald bei kinderchirurgischen Eingriffen mit einem signifikanten Blutverlust zu rechnen ist, wird auch das System der Blutgerinnung beeinflusst. Um die fibrinolytische Aktivität des Gerinnungssystems zu hemmen, werden auch und besonders bei Kindern Antifibrinolytika eingesetzt. Während zahlreiche Studien bei erwachsenen Patienten zu diesem Thema publiziert wurden, ist die Datenlage in der Pädiatrie begrenzt. Dieser Artikel fasst die wesentlichen Unterschiede des Gerinnungssystems von Kindern zu dem erwachsener Patienten zusammen und stellt die Indikationen, Medikamente und Nebenwirkungen der verfügbaren Antifibrinolytika beim Einsatz in der pädiatrischen Chirurgie dar.

Abstract

More than 30 years ago the pioneering work of Andrew and co-workers showed that the coagulation system of children is different than from adult. They have introduced the term of “developmental hemostasis” to describe this phenomenon. They were able to show that the concentration of coagulation factors and inhibitors are age-dependent and therefore reference limits from adult practice cannot be transferred to children one to one. Numerous studies showed that the perioperative loss of blood, and thus the use of homologous blood could be limited by administering antifibrinolytic substances such as aprotinin. Other antifibrinolytics acting substances like Epsilon-aminocaproic acid (EACA) or tranexamic acid (TXA) tended to be misfits in routine clinical practice. In 2006, the publication of a retrospective study carried out by Mangano et al, in which considerable safety concerns were expressed with regard to aprotinin led to a significant rethinking of its clinical use. Two years later the results of the BART (Blood Conservation using antifibrinolytics in a Randomized Trial) study confirmed that there was an increased postoperative mortality associated with the use of aprotinin compared to TXA and EACA.

In a few adult studies so far tranexamic acid was found to be comparably as effective as aprotinin. Although TXA is a long known drug available on the market for more than 50 years, the studies connecting factors of indication, dosage regimen and safety are limited especially in children and infants. This article highlights the differences in the coagulation system in children compared to adult as well as indication, dosage regimens and possible side effects of antifibrinolytic agents in children.

Kernaussagen

  • Das Blutgerinnungssystem bei Kindern unterscheidet sich im Vergleich zu Erwachsenen je nach Alter: Die Konzentrationen von Gerinnungsfaktoren und Inhibitoren variieren altersabhängig. Darum lassen sich bekannte Referenzwerte für Blutgerinnungsparameter für Erwachsene nicht auf alle Altersgruppen übertragen.

  • Derzeit ist Tranexamsäure das einzige in Deutschland für pädiatrische Patienten zugelassene Antifibrinolytikum.

  • Bisher publizierte Daten unterstützen die Anwendung von Antifibrinolytika bei komplexen herzchirurgischen Operationen von Neugeborenen, bei Patienten mit zyanotischen Vitien und bei Rethorakotomien.

  • Aufgrund der begrenzten und heterogenen Daten zur Anwendung von Antifibrinolytika in der pädiatrischen Chirurgie können noch keine gesicherten Aussagen zur optimalen Dosierung sowie zu möglichen Risiken und Nebenwirkungen gemacht werden.

Ergänzendes Material

 
  • Literatur

  • 1 Andrew M, Vegh P, Johnston M et al. Maturation of the hemostatic system during childhood. Blood 1992; 80: 1998-2005
  • 2 Haidl H, Cimenti C, Leschnik B et al. Age-dependency of thrombin generation measured by means of calibrated automated thrombography (CAT). Thromb Haemost 2006; 95: 772-775
  • 3 Albisetti M. The fibrinolytic system in children. Semin Thromb Hemost 2003; 29: 339-348
  • 4 Parmar N, Albisetti M, Berry LR et al. The fibrinolytic system in newborns and children. Clinical laboratory 2006; 52: 115-124
  • 5 Appel IM, Grimminck B, Geerts J et al. Age dependency of coagulation parameters during childhood and puberty. J Thromb Haemost DOI: 10.1111/j.1538-7836.2012.04905.x. [Epub ahead of print] 2012;
  • 6 Monagle P, Barnes C, Ignjatovic V et al. Developmental haemostasis. Impact for clinical haemostasis laboratories. Thromb Haemost 2006; 95: 362-372
  • 7 Monagle P, Massicotte P. Developmental haemostasis: secondary haemostasis. Semin Fetal Neonatal Med 2011; 16: 294-300
  • 8 Monagle P, Newall F, Campbell J. Anticoagulation in neonates and children: Pitfalls and dilemmas. Blood Reviews 2010; 24: 151-162
  • 9 Giordano R, Palma G, Poli V et al. Tranexamic acid therapy in pediatric cardiac surgery: a single-center study. Ann Thorac Surg 2012; 94: 1302-1306
  • 10 Grant JA, Howard J, Luntley J et al. Perioperative blood transfusion requirements in pediatric scoliosis surgery: the efficacy of tranexamic acid. J Pediatr Orthop 2009; 29: 300-304
  • 11 Sethna NF, Zurakowski D, Brustowicz RM et al. Tranexamic acid reduces intraoperative blood loss in pediatric patients undergoing scoliosis surgery. Anesthesiology 2005; 102: 727-732
  • 12 Song G, Yang P, Zhu S et al. Tranexamic Acid reducing blood transfusion in children undergoing craniosynostosis surgery. J Craniofac Surg 2013; 24: 299-303
  • 13 Tzortzopoulou A, Cepeda MS, Schumann R et al. Antifibrinolytic agents for reducing blood loss in scoliosis surgery in children. Cochrane Database Syst Rev DOI: 10.1002/14651858.CD006883.pub2. CD 006883 2008;
  • 14 Chen RH, Frazier OH, Cooley DA. Antifibrinolytic therapy in cardiac surgery. Tex Heart Inst J 1995; 22: 211-215
  • 15 Ide M, Bolliger D, Taketomi T et al. Lessons from the aprotinin saga: current perspective on antifibrinolytic therapy in cardiac surgery. J Anesth 2010; 24: 96-106
  • 16 Peters DC, Noble S. Aprotinin: an update of its pharmacology and therapeutic use in open heart surgery and coronary artery bypass surgery. Drugs 1999; 57: 233-260
  • 17 Robert S, Wagner BK, Boulanger M et al. Aprotinin. Ann Pharmacother 1996; 30: 372-380
  • 18 Royston D. Aprotinin in patients having coronary artery bypass graft surgery. Curr Opin Cardiol 1995; 10: 591-596
  • 19 Umscheid CA, Kohl BA, Williams K. Antifibrinolytic use in adult cardiac surgery. Curr Opin Hematol 2007; 14: 455-467
  • 20 Davies MJ, Allen A, Kort H et al. Prospective, randomized, double-blind study of high-dose aprotinin in pediatric cardiac operations. Ann Thorac Surg 1997; 63: 497-503
  • 21 Williams GD, Ramamoorthy C, Pentcheva K et al. A randomized, controlled trial of aprotinin in neonates undergoing open-heart surgery. Paediatr Anaesth 2008; 18: 812-819
  • 22 Carrel TP, Schwanda M, Vogt PR et al. Aprotinin in pediatric cardiac operations: a benefit in complex malformations and with high-dose regimen only. Ann Thorac Surg 1998; 66: 153-158
  • 23 Murugesan C, Banakal SK, Garg R et al. The efficacy of aprotinin in arterial switch operations in infants. Anesth Analg 2008; 107: 783-787
  • 24 Schouten ES, van de Pol AC, Schouten AN et al. The effect of aprotinin, tranexamic acid, and aminocaproic acid on blood loss and use of blood products in major pediatric surgery: a meta-analysis. Pediatr Crit Care Med 2009; 10: 182-190
  • 25 Pasquali SK, Li JS, He X et al. Comparative analysis of antifibrinolytic medications in pediatric heart surgery. Journal Thorac Cardiovasc Surg 2012; 143: 550-557
  • 26 Bidstrup BP, Royston D, Sapsford RN et al. Reduction in blood loss and blood use after cardiopulmonary bypass with high dose aprotinin (Trasylol). Journal Thorac Cardiovasc Surg 1989; 97: 364-372
  • 27 Royston D. High-dose aprotinin therapy: a review of the first five years' experience. J Cardiothorac Vasc Anesth 1992; 6: 76-100
  • 28 Verstraete M. Clinical application of inhibitors of fibrinolysis. Drugs 1985; 29: 236-261
  • 29 Green D, Ts ao CH, Cerullo L et al. Clinical and laboratory investigation of the effects of epsilon-aminocaproic acid on hemostasis. J Lab Clin Med 1985; 105: 321-327
  • 30 Gralnick HR, Greipp P. Thrombosis with epsilon aminocaproic acid therapy. Am J Clin Pathol 1971; 56: 151-154
  • 31 Charytan C, Purtilo D. Glomerular capillary thrombosis and acute renal failure after epsilon-amino caproic acid therapy. N Engl J Med 1969; 280: 1102-1104
  • 32 Pitts TO, Spero JA, Bontempo FA et al. Acute renal failure due to high-grade obstruction following therapy with epsilon-aminocaproic acid. Am J Kidney Dis 1986; 8: 441-444
  • 33 Wymenga LF, van der Boon WJ. Obstruction of the renal pelvis due to an insoluble blood clot after epsilon-aminocaproic acid therapy: resolution with intraureteral streptokinase instillations. J Urol 1998; 159: 490-492
  • 34 Ratnoff OD. Epsilon aminocaproic acid – a dangerous weapon. N Engl J Med 1969; 280: 1124-1125
  • 35 Henry DA, Carless PA, Moxey AJ et al. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev DOI: 10.1002/14651858.CD001886.pub4. CD 001886 2011;
  • 36 Hoylaerts M, Lijnen HR, Collen D. Studies on the mechanism of the antifibrinolytic action of tranexamic acid. Biochim Biophys Acta 1981; 673: 75-85
  • 37 Longstaff C. Studies on the mechanisms of action of aprotinin and tranexamic acid as plasmin inhibitors and antifibrinolytic agents. Blood Coagul Fibrinolysis 1994; 5: 537-542
  • 38 Takada A, Makino Y, Takada Y. Effects of tranexamic acid on fibrinolysis, fibrinogenolysis and amidolysis. Thromb Res 1986; 42: 39-47
  • 39 Lethagen S, Bjorlin G. Effect of tranexamic acid on platelet function in normal volunteers. Eur J Haematol 1991; 47: 77-78
  • 40 Soslau G, Horrow J, Brodsky I. Effect of tranexamic acid on platelet ADP during extracorporeal circulation. Am J Hematol 1991; 38: 113-119
  • 41 Andersson L, Nilsson IM, Liedberg G et al. Antifibrinolytic drugs. Comparative studies on trans-4-(aminomethyl)-cyclohexane carbonic acid, aminocapronic acid and p-aminomethylbenzoic acid. Arzneimittel-Forschung 1971; 21: 424-429
  • 42 Chauhan S, Das SN, Bisoi A et al. Comparison of epsilon aminocaproic acid and tranexamic acid in pediatric cardiac surgery. J Cardiothorac Vasc Anesth 2004; 18: 141-143
  • 43 Zonis Z, Seear M, Reichert C et al. The effect of preoperative tranexamic acid on blood loss after cardiac operations in children. J Thorac Cardiovasc Surg 1996; 111: 982-987
  • 44 Levin E, Wu J, Devine DV et al. Hemostatic parameters and platelet activation marker expression in cyanotic and acyanotic pediatric patients undergoing cardiac surgery in the presence of tranexamic acid. Thromb Haemost 2000; 83: 54-59
  • 45 van der Staak FH, de Haan AF, Geven WB et al. Surgical repair of congenital diaphragmatic hernia during extracorporeal membrane oxygenation: hemorrhagic complications and the effect of tranexamic acid. J Pediatr Surg 1997; 32: 594-599
  • 46 Bulutcu FS, Ozbek U, Polat B et al. Which may be effective to reduce blood loss after cardiac operations in cyanotic children: tranexamic acid, aprotinin or a combination?. Paediatr Anaesth 2005; 15: 41-46
  • 47 Schindler E, Photiadis J, Sinzobahamvya N et al. Tranexamic acid: an alternative to aprotinin as antifibrinolytic therapy in pediatric congenital heart surgery. Eur J Cardiothorac Surg 2011; 39: 495-499
  • 48 Despotis GJ, Avidan MS, Hogue Jr. CW. Mechanisms and attenuation of hemostatic activation during extracorporeal circulation. Ann Thorac Surg 2001; 72: 1821-1831
  • 49 Edmunds Jr. LH. Blood-surface interactions during cardiopulmonary bypass. J Card Surg 1993; 8: 404-410
  • 50 Mangano DT, Tudor IC, Dietzel C. The risk associated with aprotinin in cardiac surgery. N Engl J Med 2006; 354: 353-365
  • 51 Mangano DT, Miao Y, Vuylsteke A et al. Mortality associated with aprotinin during 5 years following coronary artery bypass graft surgery. JAMA 2007; 297: 471-479
  • 52 Fergusson DA, Hebert PC, Mazer CD et al. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med 2008; 358: 2319-2331
  • 53 Szekely A, Sapi E, Breuer T et al. Aprotinin and renal dysfunction after pediatric cardiac surgery. Paediatr Anaesth 2008; 18: 151-159
  • 54 Backer CL, Kelle AM, Stewart RD et al. Aprotinin is safe in pediatric patients undergoing cardiac surgery. J Thorac Cardiovasc Surg discussion 2007; 134: 1426-1428
  • 55 Brown JR. Mortality manifesto: a meta-analysis of aprotinin and tranexamic acid mortality. Eur J Cardiothorac Surg 2009; 36: 781-782
  • 56 Brown JR, Birkmeyer NJ, O'Connor GT. Meta-analysis comparing the effectiveness and adverse outcomes of antifibrinolytic agents in cardiac surgery. Circulation 2007; 115: 2801-2813
  • 57 Breuer T, Martin K, Wilhelm M et al. The blood sparing effect and the safety of aprotinin compared to tranexamic acid in paediatric cardiac surgery. Eur J Cardiothorac Surg author reply 2009; 35
  • 58 Furtmuller R, Schlag MG, Berger M et al. Tranexamic acid, a widely used antifibrinolytic agent, causes convulsions by a gamma-aminobutyric acid(A) receptor antagonistic effect. J Pharmacol Exp Ther 2002; 301: 168-173
  • 59 Schlag MG, Hopf R, Redl H. Convulsive seizures following subdural application of fibrin sealant containing tranexamic acid in a rat model. Neurosurgery 2000; 47: 1463-1467
  • 60 Schlag MG, Hopf R, Zifko U et al. Epileptic seizures following cortical application of fibrin sealants containing tranexamic acid in rats. Acta Neurochir 2002; 144: 63-69
  • 61 Jaquiss RD, Ghanayem NS, Zacharisen MC et al. Safety of aprotinin use and re-use in pediatric cardiothoracic surgery. Circulation 2002; 106: 90-94
  • 62 Williams-Johnson JA, McDonald AH, Strachan GG et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2) A randomised, placebo-controlled trial. West Indian Med J 2010; 59: 612-624