RSS-Feed abonnieren
DOI: 10.1055/s-0033-1353393
Glanzmann Thrombasthenia: State of the Art and Future Directions
Publikationsverlauf
Publikationsdatum:
08. August 2013 (online)
Abstract
Glanzmann thrombasthenia (GT) is the principal inherited disease of platelets and the most commonly encountered disorder of an integrin. GT is characterized by spontaneous mucocutaneous bleeding and an exaggerated response to trauma caused by platelets that fail to aggregate when stimulated by physiologic agonists. GT is caused by quantitative or qualitative deficiencies of αIIbβ3, an integrin coded by the ITGA2B and ITGB3 genes and which by binding fibrinogen and other adhesive proteins joins platelets together in the aggregate. Widespread genotyping has revealed that mutations spread across both genes, yet the reason for the extensive variation in both the severity and intensity of bleeding between affected individuals remains poorly understood. Furthermore, although genetic defects of ITGB3 affect other tissues with β3 present as αvβ3 (the vitronectin receptor), the bleeding phenotype continues to dominate. Here, we look in detail at mutations that affect (i) the β-propeller region of the αIIb head domain and (ii) the membrane proximal disulfide-rich epidermal growth factor (EGF) domains of β3 and which often result in spontaneous integrin activation. We also examine deep vein thrombosis as an unexpected complication of GT and look at curative procedures for the diseases, including allogeneic stem cell transfer and the potential for gene therapy.
Keywords
Glanzmann thrombasthenia - αIIbβ3 integrin - platelet aggregation - mutation analysis - gene therapyAuthorship
A.T.N. and D.A.W. were responsible for manuscript design and writing. X.P. helped with data collection, figure design, and performed computer modeling. All authors have reviewed and approved the final version of the manuscript. The authors have no conflict of interest to report.
-
References
- 1 George JN, Caen JP, Nurden AT. Glanzmann's thrombasthenia: the spectrum of clinical disease. Blood 1990; 75 (7) 1383-1395
- 2 Nurden AT, Fiore M, Nurden P, Pillois X. Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood 2011; 118 (23) 5996-6005
- 3 Nurden AT, Pillois X, Nurden P. Understanding the genetic basis of Glanzmann thrombasthenia: implications for treatment. Expert Rev Hematol 2012; 5 (5) 487-503
- 4 Xiao T, Takagi J, Coller BS, Wang JH, Springer TA. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 2004; 432 (7013) 59-67
- 5 Arnaout MA, Mahalingam B, Xiong JP. Integrin structure, allostery, and bidirectional signalling. Annu Rev Cell Biol 2005; 21: 381-410
- 6 Coller BS, Shattil SJ. The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood 2008; 112 (8) 3011-3025
- 7 Harrison P, Mackie I, Mumford A , et al; British Committee for Standards in Haematology. Guidelines for the laboratory investigation of heritable disorders of platelet function. Br J Haematol 2011; 155 (1) 30-44
- 8 Bolton-Maggs PHB, Chalmers EA, Collins PW , et al; UKHCDO. A review of inherited platelet disorders with guidelines for their management on behalf of the UKHCDO. Br J Haematol 2006; 135 (5) 603-633
- 9 Niessner H, Clemetson KJ, Panzer S, Mueller-Eckhardt C, Santoso S, Bettelheim P. Acquired thrombasthenia due to GPIIb/IIIa-specific platelet autoantibodies. Blood 1986; 68 (2) 571-576
- 10 Thornton MA, Poncz M, Korostishevsky M , et al. The human platelet alphaIIb gene is not closely linked to its integrin partner beta 3. Blood 1999; 94 (6) 2039-2047
- 11 Kunicki TJ, Williams SA, Nugent DJ, Yeager M. Mean platelet volume and integrin alleles correlate with levels of integrins α(IIb)β(3) and α(2)β(1) in acute coronary syndrome patients and normal subjects. Arterioscler Thromb Vasc Biol 2012; 32 (1) 147-152
- 12 Jallu V, Dusseaux M, Panzer S , et al. AlphaIIbbeta3 integrin: new allelic variants in Glanzmann thrombasthenia, effects on ITGA2B and ITGB3 mRNA splicing, expression, and structure-function. Hum Mutat 2010; 31 (3) 237-246
- 13 Jayo A, Pabón D, Lastres P, Jiménez-Yuste V, González-Manchón C. Type II Glanzmann thrombasthenia in a compound heterozygote for the α IIb gene. A novel missense mutation in exon 27. Haematologica 2006; 91 (10) 1352-1359
- 14 Peterson JA, Pechauer SM, Gitter ML , et al. New platelet glycoprotein polymorphisms causing maternal immunization and neonatal alloimmune thrombocytopenia. Transfusion 2012; 52 (5) 1117-1124
- 15 Newman PJ, Seligsohn U, Lyman S, Coller BS. The molecular genetic basis of Glanzmann thrombasthenia in the Iraqi-Jewish and Arab populations in Israel. Proc Natl Acad Sci U S A 1991; 88 (8) 3160-3164
- 16 Rosenberg N, Hauschner H, Peretz H , et al. A 13-bp deletion in α(IIb) gene is a founder mutation that predominates in Palestinian-Arab patients with Glanzmann thrombasthenia. J Thromb Haemost 2005; 3 (12) 2764-2772
- 17 Fiore M, Pillois X, Nurden P, Nurden AT, Austerlitz F. Founder effect and estimation of the age of the French Gypsy mutation associated with Glanzmann thrombasthenia in Manouche families. Eur J Hum Genet 2011; 19 (9) 981-987
- 18 González-Manchón C, Arias-Salgado EG, Butta N , et al. A novel homozygous splice junction mutation in GPIIb associated with alternative splicing, nonsense-mediated decay of GPIIb-mRNA, and type II Glanzmann's thrombasthenia. J Thromb Haemost 2003; 1 (5) 1071-1078
- 19 Tronik-Le Roux D, Roullot V, Poujol C, Kortulewski T, Nurden P, Marguerie G. Thrombasthenic mice generated by replacement of the integrin α(IIb) gene: demonstration that transcriptional activation of this megakaryocytic locus precedes lineage commitment. Blood 2000; 96 (4) 1399-1408
- 20 Mitchell WB, Li JH, French DL, Coller BS. alphaIIbbeta3 biogenesis is controlled by engagement of alphaIIb in the calnexin cycle via the N15-linked glycan. Blood 2006; 107 (7) 2713-2719
- 21 Rosenberg N, Yatuv R, Sobolev V, Peretz H, Zivelin A, Seligsohn U. Major mutations in calf-1 and calf-2 domains of glycoprotein IIb in patients with Glanzmann thrombasthenia enable GPIIb/IIIa complex formation, but impair its transport from the endoplasmic reticulum to the Golgi apparatus. Blood 2003; 101 (12) 4808-4815
- 22 Rosenberg N, Landau M, Luboshitz J, Rechavi G, Seligsohn U. A novel Phe171Cys mutation in integrin alpha causes Glanzmann thrombasthenia by abrogating αIIbβ3 complex formation. J Thromb Haemost 2004; 2 (7) 1167-1175
- 23 Chen P, Melchior C, Brons NHC, Schlegel N, Caen J, Kieffer N. Probing conformational changes in the I-like domain and the cysteine-rich repeat of human β3 integrins following disulfide bond disruption by cysteine mutations: identification of cysteine 598 involved in αIIbβ3 activation. J Biol Chem 2001; 276 (42) 38628-38635
- 24 Mor-Cohen R, Rosenberg N, Peretz H , et al. Disulfide bond disruption by a β 3-Cys549Arg mutation in six Jordanian families with Glanzmann thrombasthenia causes diminished production of constitutively active αIIbβ3 . Thromb Haemost 2007; 98 (6) 1257-1265
- 25 Xiong JP, Stehle T, Diefenbach B , et al. Crystal structure of the extracellular segment of integrin αvβ3 . Science 2001; 294 (5541) 339-345
- 26 Xiong JP, Stehle T, Zhang R , et al. Crystal structure of the extracellular segment of integrin αvβ3 in complex with an Arg-Gly-Asp ligand. Science 2002; 296 (5565) 151-155
- 27 Kamata T, Tieu KK, Irie A, Springer TA, Takada Y. Amino acid residues in the α IIb subunit that are critical for ligand binding to integrin alphaIIb beta3 are clustered in the β-propeller model. J Biol Chem 2001; 276 (47) 44275-44283
- 28 Poujol C, Nurden AT, Nurden P. Ultrastructural analysis of the distribution of the vitronectin receptor (α v β 3) in human platelets and megakaryocytes reveals an intracellular pool and labelling of the α-granule membrane. Br J Haematol 1997; 96 (4) 823-835
- 29 Morel-Kopp MC, Melchior C, Chen P , et al. A naturally occurring point mutation in the β3 integrin MIDAS-like domain affects differently alphavbeta3 and alphaIIIbbeta3 receptor function. Thromb Haemost 2001; 86 (6) 1425-1434
- 30 Nurden AT, Ruan J, Pasquet J-M , et al. A novel 196Leu to Pro substitution in the beta3 subunit of the alphaIIbbeta3 integrin in a patient with a variant form of Glanzmann thrombasthenia. Platelets 2002; 13 (2) 101-111
- 31 Ward CM, Kestin AS, Newman PJ. A Leu262Pro mutation in the integrin β(3) subunit results in an α(IIb)-β(3) complex that binds fibrin but not fibrinogen. Blood 2000; 96 (1) 161-169
- 32 Jackson DE, White MM, Jennings LK, Newman PJ. A Ser162—>Leu mutation within glycoprotein (GP) IIIa (integrin β3) results in an unstable alphaIIbbeta3 complex that retains partial function in a novel form of type II Glanzmann thrombasthenia. Thromb Haemost 1998; 80 (1) 42-48
- 33 Ambo H, Kamata T, Handa M , et al. Three novel integrin β3 subunit missense mutations (H280P, C560F, and G579S) in thrombasthenia, including one (H280P) prevalent in Japanese patients. Biochem Biophys Res Commun 1998; 251 (3) 763-768
- 34 Tadokoro S, Tomiyama Y, Honda S , et al. Missense mutations in the β(3) subunit have a different impact on the expression and function between α(IIb)β(3) and α(v)β(3). Blood 2002; 99 (3) 931-938
- 35 Hauschner H, Landau M, Seligsohn U, Rosenberg N. A unique interaction between alphaIIb and beta3 in the head region is essential for outside-in signaling-related functions of alphaIIbbeta3 integrin. Blood 2010; 115 (22) 4542-4550
- 36 Basani RB, Brown DL, Vilaire G, Bennett JS, Poncz MA. A Leu117—>Trp mutation within the RGD-peptide cross-linking region of beta3 results in Glanzmann thrombasthenia by preventing alphaIIb beta3 export to the platelet surface. Blood 1997; 90 (8) 3082-3088
- 37 Newman PJ, Weyerbusch-Bottum S, Visentin GP, Gidwitz S, White GC. Type II Glanzmann thrombasthenia due to a destabilizing amino acid substitution in platelet membrane glycoprotein IIIa. Thromb Haemost 1993; 69: 1017 (abstr)
- 38 Grimaldi CM, Chen F, Scudder LE, Coller BS, French DLA. A Cys374Tyr homozygous mutation of platelet glycoprotein IIIa (beta 3) in a Chinese patient with Glanzmann's thrombasthenia. Blood 1996; 88 (5) 1666-1675
- 39 Mor-Cohen R, Rosenberg N, Einav Y , et al. Unique disulfide bonds in epidermal growth factor (EGF) domains of β3 affect structure and function of αIIbβ3 and αvβ3 integrins in different manner. J Biol Chem 2012; 287: 8878-8891
- 40 Nelson EJR, Li J, Mitchell WB, Chandy M, Srivastava A, Coller BS. Three novel β-propeller mutations causing Glanzmann thrombasthenia result in production of normally stable pro-alphaIIb, but variably impaired progression of pro-αIIbβ3 from endoplasmic reticulum to Golgi. J Thromb Haemost 2005; 3 (12) 2773-2783
- 41 Poncz M, Rifat S, Coller BS , et al. Glanzmann thrombasthenia secondary to a Gly273->Asp mutation adjacent to the first calcium-binding domain of platelet glycoprotein IIb. J Clin Invest 1994; 93: 172-179
- 42 Wilcox DA, Paddock CM, Lyman S, Gill JC, Newman PJ. Glanzmann thrombasthenia resulting from a single amino acid substitution between the second and third calcium-binding domains of GPIIb. Role of the GPIIb amino terminus in integrin subunit association. J Clin Invest 1995; 95 (4) 1553-1560
- 43 Wilcox DA, Wautier JL, Pidard D, Newman PJ. A single amino acid substitution flanking the fourth calcium binding domain of αIIb prevents maturation of the αIIbβ3 integrin complex. J Biol Chem 1994; 269 (6) 4450-4457
- 44 Jackson DE, Poncz M, Holyst MT, Newman PJ. Inherited mutations within the calcium-binding sites of the integrin αIIb subunit (platelet glycoprotein IIb). Effects of the amino acid side chain and the amino acid position on cation binding. Eur J Biochem 1996; 240 (1) 280-287
- 45 Basani RB, Vilaire G, Shattil SJ, Kolodziej MA, Bennett JS, Poncz MA. Glanzmann thrombasthenia due to a two amino acid deletion in the fourth calcium-binding domain of αIIb: demonstration of the importance of calcium-binding domains in the conformation of αIIbβ3 . Blood 1996; 88 (1) 167-173
- 46 Mitchell WB, Li JH, Singh F , et al. Two novel mutations in the αIIb calcium-binding domains identify hydrophobic regions essential for αIIbβ3 biogenesis. Blood 2003; 101 (6) 2268-2276
- 47 Peretz H, Rosenberg N, Landau M , et al. Molecular diversity of Glanzmann thrombasthenia in southern India: new insights into mRNA splicing and structure-function correlations of alphaIIbbeta3 integrin (ITGA2B, ITGB3). Hum Mutat 2006; 27 (4) 359-369
- 48 Kannan M, Ahmad F, Yadav BK, Kumar R, Choudhry VP, Saxena R. Molecular defects in ITGA2B and ITGB3 genes in patients with Glanzmann thrombasthenia. J Thromb Haemost 2009; 7 (11) 1878-1885
- 49 Grimaldi CM, Chen F, Wu C, Weiss HJ, Coller BS, French DL. Glycoprotein IIb Leu214Pro mutation produces Glanzmann thrombasthenia with both quantitative and qualitative abnormalities in GPIIb/IIIa. Blood 1998; 91 (5) 1562-1571
- 50 Shen W-Z, Ding Q-L, Jin P-P , et al. A novel Pro126His β propeller mutation in integrin alphaIIb causes Glanzmann thrombasthenia by impairing progression of pro-alphaIIbbeta3 from endoplasmic reticulum to Golgi. Blood Cells Mol Dis 2009; 42 (1) 44-50
- 51 Nurden AT, Fiore M, Nurden P, Heilig R, Pillois X. Are bone defects in rare patients with Glanzmann's thrombasthenia associated with ITGB3 or ITGA2B mutations?. Platelets 2011; 22 (7) 547-551
- 52 McKay BS, Annis DS, Honda S, Christie D, Kunicki TJ. Molecular requirements for assembly and function of a minimized human integrin alphaIIbbeta3. J Biol Chem 1996; 271 (48) 30544-30547
- 53 Kiyoi T, Tomiyama Y, Honda S , et al. A naturally occurring Tyr143His αIIb mutation abolishes αIIbβ3 function for soluble ligands but retains its ability for mediating cell adhesion and clot retraction: comparison with other mutations causing ligand-binding defects. Blood 2003; 101 (9) 3485-3491
- 54 Honda S, Tomiyama Y, Shiraga M , et al. A two-amino acid insertion in the Cys146- Cys167 loop of the alphaIIb subunit is associated with a variant of Glanzmann thrombasthenia. Critical role of Asp163 in ligand binding. J Clin Invest 1998; 102 (6) 1183-1192
- 55 Basani RB, French DL, Vilaire G , et al. A naturally occurring mutation near the amino terminus of αIIb defines a new region involved in ligand binding to αIIbβ3 . Blood 2000; 95 (1) 180-188
- 56 Westrup D, Santoso S, Follert-Hagendorff K , et al. Glanzmann thrombasthenia Frankfurt I is associated with a point mutation Thr176Ile in the N-terminal region of αIIb subunit integrin. Thromb Haemost 2004; 92 (5) 1040-1051
- 57 Mansour W, Einav Y, Hauschner H, Koren A, Seligsohn U, Rosenberg N. An αIIb mutation in patients with Glanzmann thrombasthenia located in the N-terminus of blade 1 of the β-propeller (Asn2Asp) disrupts a calcium binding site in blade 6. J Thromb Haemost 2011; 9 (1) 192-200
- 58 Zhu J, Luo BH, Xiao T, Zhang C, Nishida N, Springer TA. Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol Cell 2008; 32 (6) 849-861
- 59 Mitchell WB, Li JH, Murcia M, Valentin N, Newman PJ, Coller BS. Mapping early conformational changes in alphaIIb and beta3 during biogenesis reveals a potential mechanism for alphaIIbbeta3 adopting its bent conformation. Blood 2007; 109 (9) 3725-3732
- 60 Calvete JJ, Henschen A, González-Rodríguez J. Assignment of disulphide bonds in human platelet GPIIIa. A disulphide pattern for the β-subunits of the integrin family. Biochem J 1991; 274 (Pt 1) 63-71
- 61 Kamata T, Ambo H, Puzon-McLaughlin W , et al. Critical cysteine residues for regulation of integrin alphaIIbbeta3 are clustered in the epidermal growth factor domains of the beta3 subunit. Biochem J 2004; 378 (Pt 3) 1079-1082
- 62 Milet-Marsal S, Breillat C, Peyruchaud O , et al. Two different β3 cysteine substitutions alter αIIbβ3 maturation and result in Glanzmann thrombasthenia. Thromb Haemost 2002; 88 (1) 104-110
- 63 Ruiz C, Liu C-Y, Sun Q-H , et al. A point mutation in the cysteine-rich domain of glycoprotein (GP) IIIa results in the expression of a GPIIb-IIIa (alphaIIbbeta3) integrin receptor locked in a high-affinity state and a Glanzmann thrombasthenia-like phenotype. Blood 2001; 98 (8) 2432-2441
- 64 Fang J, Nurden P, North P , et al. C560Rβ3 caused platelet integrin αIIbβ3 to bind fibrinogen continuously yet resulted in a severe bleeding syndrome and increased murine mortality. J Thromb Haemost 2013; 11 (6) 1163-1171
- 65 Nurden A, Nurden P. Advances in our understanding of the molecular basis of disorders of platelet function. J Thromb Haemost 2011; 9 (Suppl. 01) 76-91
- 66 Mor-Cohen R, Rosenberg N, Landau M, Seligsohn U. Specific cysteines in β3 are involved in disulfide bond exchange-dependent and -independent activation of αIIbβ3 . J Biol Chem 2008; 28: 19235-19244
- 67 Beglova N, Blacklow SC, Takagi J, Springer TA. Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation. Nat Struct Biol 2002; 9 (4) 282-287
- 68 Wang R, Peterson J, Aster RH, Newman PJ. Disruption of a long-range disulfide bond between residues Cys406 and Cys655 in glycoprotein IIIa does not affect the function of platelet glycoprotein IIb-IIIa. Blood 1997; 90 (4) 1718-1719
- 69 Luo BH, Springer TA, Takagi J. Stabilizing the open conformation of the integrin headpiece with a glycan wedge increases affinity for ligand. Proc Natl Acad Sci U S A 2003; 100 (5) 2403-2408
- 70 Kashiwagi H, Tomiyama Y, Tadokoro S , et al. A mutation in the extracellular cysteine-rich repeat region of the beta3 subunit activates integrins alphaIIbbeta3 and alphaVbeta3. Blood 1999; 93 (8) 2559-2568
- 71 Donald JE, Zhu H, Litvinov RI, DeGrado WF, Bennett JS. Identification of interacting hot spots in the β3 integrin stalk using comprehensive interface design. J Biol Chem 2010; 285 (49) 38658-38665
- 72 González-Manchón C, Butta N, Larrucea S , et al. A variant thrombasthenic phenotype associated with compound heterozygosity of integrin beta3-subunit: (Met124Val)beta3 alters the subunit dimerization rendering a decreased number of constitutive active alphaIIbbeta3 receptors. Thromb Haemost 2004; 92 (6) 1377-1386
- 73 Loftus JC, O'Toole TE, Plow EF, Glass A, Frelinger III AL, Ginsberg MH. A beta3 integrin mutation abolishes ligand binding and alters divalent cation-dependent conformation. Science 1990; 249 (4971) 915-918
- 74 Bajt ML, Ginsberg MH, Frelinger III AL, Berndt MC, Loftus JC. A spontaneous mutation of integrin αIIbβ3 (platelet glycoprotein IIb-IIIa) helps define a ligand binding site. J Biol Chem 1992; 267 (6) 3789-3794
- 75 Tozer EC, Liddington RC, Sutcliffe MJ, Smeeton AH, Loftus JC. Ligand binding to integrin alphaIIbbeta3 is dependent on a MIDAS-like domain in the beta3 subunit. J Biol Chem 1996; 271 (36) 21978-21984
- 76 Tuckwell DS, Humphries MJ. A structure prediction for the ligand-binding region of the integrin β subunit: evidence for the presence of a von Willebrand factor A domain. FEBS Lett 1997; 400 (3) 297-303
- 77 Springer TA, Zhu J, Xiao T. Structural basis for distinctive recognition of fibrinogen gammaC peptide by the platelet integrin alphaIIbbeta3. J Cell Biol 2008; 182 (4) 791-800
- 78 Vanhoorelbeke K, De Meyer SF, Pareyn I , et al. The novel S527F mutation in the integrin beta3 chain induces a high affinity alphaIIbbeta3 receptor by hindering adoption of the bent conformation. J Biol Chem 2009; 284 (22) 14914-14920
- 79 Chen Y-P, Djaffar I, Pidard D , et al. Ser-752—>Pro mutation in the cytoplasmic domain of integrin β3 subunit and defective activation of platelet integrin αIIbβ3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia. Proc Natl Acad Sci U S A 1992; 89 (21) 10169-10173
- 80 Wang R, Shattil SJ, Ambruso DR, Newman PJ. Truncation of the cytoplasmic domain of β3 in a variant form of Glanzmann thrombasthenia abrogates signaling through the integrin α(IIb)β3 complex. J Clin Invest 1997; 100 (9) 2393-2403
- 81 Nurden AT, Pillois X, Fiore M, Heilig R, Nurden P. Glanzmann thrombasthenia-like syndromes associated with macrothrombocytopenias and mutations in the genes encoding the αIIbβ3 integrin. Semin Thromb Hemost 2011; 37 (6) 698-706
- 82 Peyruchaud O, Nurden AT, Milet S , et al. R to Q amino acid substitution in the GFFKR sequence of the cytoplasmic domain of the integrin αIIb subunit in a patient with a Glanzmann's thrombasthenia-like syndrome. Blood 1998; 92 (11) 4178-4187
- 83 Kunishima S, Kashiwagi H, Otsu M , et al. Heterozygous ITGA2B R995W mutation inducing constitutive activation of the αIIbβ3 receptor affects proplatelet formation and causes congenital macrothrombocytopenia. Blood 2011; 117 (20) 5479-5484
- 84 Yang J, Ma YQ, Page RC, Misra S, Plow EF, Qin J. Structure of an integrin αIIbβ3 transmembrane-cytoplasmic heterocomplex provides insight into integrin activation. Proc Natl Acad Sci U S A 2009; 106 (42) 17729-17734
- 85 Ghevaert C, Salsmann A, Watkins NA , et al. A nonsynonymous SNP in the ITGB3 gene disrupts the conserved membrane-proximal cytoplasmic salt bridge in the alphaIIbbeta3 integrin and cosegregates dominantly with abnormal proplatelet formation and macrothrombocytopenia. Blood 2008; 111 (7) 3407-3414
- 86 Schaffner-Reckinger E, Salsmann A, Debili N , et al. Overexpression of the partially activated α(IIb)β3D723H integrin salt bridge mutant downregulates RhoA activity and induces microtubule-dependent proplatelet-like extensions in Chinese hamster ovary cells. J Thromb Haemost 2009; 7 (7) 1207-1217
- 87 Gresele P, Falcinelli E, Giannini S , et al. Dominant inheritance of a novel integrin β3 mutation associated with a hereditary macrothrombocytopenia and platelet dysfunction in two Italian families. Haematologica 2009; 94 (5) 663-669
- 88 Jayo A, Conde I, Lastres P , et al. L718P mutation in the membrane-proximal cytoplasmic tail of β3 promotes abnormal αIIbβ3 clustering and lipid microdomain coalescence, and associates with a thrombasthenia-like phenotype. Haematologica 2010; 95 (7) 1158-1166
- 89 Bury L, Malara A, Gresele P, Balduini A. Outside-in signalling generated by a constitutively activated integrin αIIbβ3 impairs proplatelet formation in human megakaryocytes. PLoS ONE 2012; 7 (4) e34449
- 90 Van de Walle GR, Schoolmeester A, Iserbyt BF , et al. Activation of alphaIIbbeta3 is a sufficient but also an imperative prerequisite for activation of α2β1 on platelets. Blood 2007; 109 (2) 595-602
- 91 Moser M, Nieswandt B, Ussar S, Pozgajova M, Fässler R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med 2008; 14 (3) 325-330
- 92 Svensson L, Howarth K, McDowall A , et al. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med 2009; 15 (3) 306-312
- 93 van de Vijver E, De Cuyper IM, Gerrits AJ , et al. Defects in Glanzmann thrombasthenia and LAD-III (LAD-1/v) syndrome: the role of integrin β1 and β3 in platelet adhesion to collagen. Blood 2012; 119 (2) 583-586
- 94 Bialkowska K, Ma Y-Q, Bledzka K , et al. The integrin co-activator Kindlin-3 is expressed and functional in a non-hematopoietic cell, the endothelial cell. J Biol Chem 2010; 285 (24) 18640-18649
- 95 Pasvolsky R, Feigelson SW, Kilic SS , et al. A LAD-III syndrome is associated with defective expression of the Rap-1 activator CalDAG-GEFI in lymphocytes, neutrophils, and platelets. J Exp Med 2007; 204 (7) 1571-1582
- 96 Canault M, Grosdidier C, Morange PE , et al. A point mutation in CALDAG-GEFI gene affects inside-out signalling and platelet spreading in humans (abstr). 1st EUPLAN platelet conference, Maastricht, Holland, 2012.
- 97 Topalov NN, Yakimenko AO, Canault M , et al. Two types of procoagulant platelets are formed upon physiological activation and are controlled by integrin α(IIb)β(3). Arterioscler Thromb Vasc Biol 2012; 32 (10) 2475-2483
- 98 D'Andrea G, Margaglione M. Glansmann's Thrombasthemia Italian Team (GLATIT). Glanzmann's thrombasthenia: modulation of clinical phenotype by α2C807T gene polymorphism. Haematologica 2003; 88 (12) 1378-1382
- 99 Kunicki TJ, Williams SA, Nugent DJ. Genetic variants that affect platelet function. Curr Opin Hematol 2012; 19 (5) 371-379
- 100 Gruel Y, Pacouret G, Bellucci S, Caen J. Severe proximal deep vein thrombosis in a Glanzmann thrombasthenia variant successfully treated with a low molecular weight heparin. Blood 1997; 90 (2) 888-890
- 101 Ten Cate H, Brandjes DPM, Smits PHM, van Mourik JA. The role of platelets in venous thrombosis: a patient with Glanzmann's thrombasthenia and a factor V Leiden mutation suffering from deep venous thrombosis. J Thromb Haemost 2003; 1 (2) 394-395
- 102 Rezende SM. Secondary prophylaxis with warfarin for recurrent thrombosis in a patient with Glanzmann thrombasthenia and F5 G1691A. Br J Haematol 2012; 156 (1) 144
- 103 Phillips R, Richards M. Venous thrombosis in Glanzmann's thrombasthenia. Haemophilia 2007; 13 (6) 758-759
- 104 d'Oiron R, Ménart C, Trzeciak MC , et al. Use of recombinant factor VIIa in 3 patients with inherited type I Glanzmann's thrombasthenia undergoing invasive procedures. Thromb Haemost 2000; 83 (5) 644-647
- 105 Nurden A, Mercié P, Zely P, Nurden P. Deep vein thrombosis, Raynaud's phenomenon and Prinzmetal angina in a patient with Glanzmann thrombasthenia. Case Rep Hematol 2012; 2012: 156290
- 106 Brill A, Fuchs TA, Chauhan AK , et al. von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood 2011; 117 (4) 1400-1407
- 107 Lisman T, Adelmeijer J, Heijnen HFG, de Groot PG. Recombinant factor VIIa restores aggregation of alphaIIbbeta3-deficient platelets via tissue factor-independent fibrin generation. Blood 2004; 103 (5) 1720-1727
- 108 Morgan EA, Schneider JG, Baroni TE , et al. Dissection of platelet and myeloid cell defects by conditional targeting of the β3-integrin subunit. FASEB J 2010; 24 (4) 1117-1127
- 109 Nurden AT, Freson K, Seligsohn U. Inherited platelet disorders. Haemophilia 2012; 18 (Suppl. 04) 154-160
- 110 Bellucci S, Devergie A, Gluckman E , et al. Complete correction of Glanzmann's thrombasthenia by allogeneic bone-marrow transplantation. Br J Haematol 1985; 59 (4) 635-641
- 111 Johnson A, Goodall AH, Downie CJ, Vellodi A, Michael DP. Bone marrow transplantation for Glanzmann's thrombasthenia. Bone Marrow Transplant 1994; 14 (1) 147-150
- 112 McColl MD, Gibson BES. Sibling allogeneic bone marrow transplantation in a patient with type I Glanzmann's thrombasthenia. Br J Haematol 1997; 99 (1) 58-80
- 113 Bellucci S, Damaj G, Boval B , et al. Bone marrow transplantation in severe Glanzmann's thrombasthenia with antiplatelet alloimmunization. Bone Marrow Transplant 2000; 25 (3) 327-330
- 114 Fujimoto T-T, Kishimoto M, Ide K , et al. Glanzmann thrombasthenia with acute myeloid leukemia successfully treated by bone marrow transplantation. Int J Hematol 2005; 81 (1) 77-80
- 115 Flood VH, Johnson FL, Boshkov LK , et al. Sustained engraftment post bone marrow transplant despite anti-platelet antibodies in Glanzmann thrombasthenia. Pediatr Blood Cancer 2005; 45 (7) 971-975
- 116 Connor P, Khair K, Liesner R , et al. Stem cell transplantation for children with Glanzmann thrombasthenia. Br J Haematol 2008; 140 (5) 568-571
- 117 Kitko CL, Levine JE, Matthews DC, Carpenter PA. Successful unrelated donor cord blood transplantation for Glanzmann's thrombasthenia. Pediatr Transplant 2011; 15 (3) e42-e46
- 118 Ishaqi MK, El-Hayek M, Gassas A , et al. Allogeneic stem cell transplantation for Glanzmann thrombasthenia. Pediatr Blood Cancer 2009; 52 (5) 682-683
- 119 Miller W, Dunn A, Chiang KY. Sustained engraftment and resolution of bleeding phenotype after unrelated cord blood hematopoietic stem cell transplantation for severe glanzmann thrombasthenia. J Pediatr Hematol Oncol 2009; 31 (6) 437-439
- 120 Wilcox DA, Olsen JC, Ishizawa L, Griffith M, White II GC. Integrin alphaIIb promoter-targeted expression of gene products in megakaryocytes derived from retrovirus-transduced human hematopoietic cells. Proc Natl Acad Sci U S A 1999; 96 (17) 9654-9659
- 121 Wilcox DA, Olsen JC, Ishizawa L , et al. Megakaryocyte-targeted synthesis of the integrin β(3)-subunit results in the phenotypic correction of Glanzmann thrombasthenia. Blood 2000; 95 (12) 3645-3651
- 122 Fang J, Hodivala-Dilke K, Johnson BD , et al. Therapeutic expression of the platelet-specific integrin, alphaIIbbeta3, in a murine model for Glanzmann thrombasthenia. Blood 2005; 106 (8) 2671-2679
- 123 Lipscomb DL, Bourne C, Boudreaux MK. Two genetic defects in alphaIIb are associated with type I Glanzmann's thrombasthenia in a Great Pyrenees dog: a 14-base insertion in exon 13 and a splicing defect of intron 13. Vet Pathol 2000; 37 (6) 581-588
- 124 Fang J, Jensen ES, Boudreaux MK , et al. Platelet gene therapy improves hemostatic function for integrin alphaIIbbeta3-deficient dogs. Proc Natl Acad Sci U S A 2011; 108 (23) 9583-9588