Der Nuklearmediziner 2013; 36(04): 212-220
DOI: 10.1055/s-0033-1355408
© Georg Thieme Verlag KG Stuttgart · New York

Wechselwirkungen zwischen Schilddrüsenerkrankungen und Diabetes mellitus: Autoimmunerkrankungen, Stoffwechselentgleisungen und Schilddrüsenkarzinom

Interaction Among Thyroid Diseases and Diabetes Mellitus: Autoimmune Diseases, Metabolic Imbalances
M. Derwahl
1   Klinik für Innere Medizin und Institut für klinische Forschung und Entwicklung, Alexianer St. Hedwig Kliniken, Berlin
› Author Affiliations
Further Information

Publication History

Publication Date:
09 January 2014 (online)

Zusammenfassung

Zwischen Schilddrüsenerkrankung und einem Diabetes mellitus gibt es vielfältige Beziehungen und Wechselwirkungen:

  1. Typ-I- aber auch Typ-II-Diabetiker entwickeln häufiger einer Autoimmunthyreoiditis, besonders wenn bei Manifestation des Diabetes bereits TPO-Antikörper nachweisbar sind.

  2. Eine Hyperthyreose kann zu einer Hypergly­kämie führen, während bei einer Hypothyreose ein erhöhtes Hypoglykämierisiko besteht. Entsprechend muss die antidiabetische Therapie während der Behandlung der Schilddrüsenfunktionsstörung kontinuierlich angepasst werden.

  3. Aufgrund der wachstumsstimulierenden Wirkung von Insulin haben Typ-II-Diabetiker mit Insulinresistenz und Hyperinsulinämie häufiger eine Struma, eine Knotenstruma und ein Schilddrüsenkarzinom. Das Antidiabetikum Metformin hat nach neusten wissenschaftlichen Erkenntnissen eine präventive Wirkung auf die Strumainzidenz, reduziert das Knotenvolumen und hat eine wachstumshemmende Wirkung auf das Schilddrüsenkarzinom. Metfomin hemmt allerdings auch den Iodid-Uptake, ein experimenteller Befund, der klinisch noch verifiziert werden muss und dessen Bedeutung im Hinblick auf eine Metformintherapie noch diskutiert wird.

Abstract

Between thyroid diseases and diabetes mellitus there are complex relations and interactions:

  1. Autoimmune thyroid diseases are more prevalent in type-I- but also in type-II-diabetics, in particular in patients with anti-TPO antibodies at the time of onset of diabetes.

  2. Hyperthyroidism may result in hyperglycemia whereas patients with hypothyroidism are at risk of hypoglycemia. Accordingly, anti-diabetic therapy has to be adjusted during treatment of thyroid dysfunction.

  3. Due to the growth-stimulatory effect of insulin type-II-diabetics are at a higher risk to develop goiter, thyroid nodules and also thyroid cancer. Recent publications suggest that the anti-diabetic drug metformin may decrease the incidence of goiters, may reduce volume of thyroid nodules and may inhibit growth of thyroid cancer. However, there is recent experimental evidence that metformin may also inhibit iodide uptake which has still to be confirmed by clinical studies.

 
  • Literatur

  • 1 Abdulrahman R, Boon MR, Sips HC et al. Impact of Metformin and Compound C on NIS expression and iodine uptake in vitro and in vivo: a role for CRE in AMPK modulation of thyroid function. Thyroid Jul 2 2013; [Epub ahead of print]
  • 2 Alth ausen TL. Hormonal and vitamin factors in intestinal absorption. Gastroenterology 1949; 12: 467-480
  • 3 Barker JM, Yu J, Yu L et al. Autoantibody “subspecificity” in type-I-diabetes: risk for organ-specific autoimmunity clusters in distinct groups. Diabetes Care 2005; 28: 850-855
  • 4 Boelaert K. The association between serum TSH concentration and thyroid cancer. Endocr Relat Cancer 2009; 16: 1065-1072
  • 5 Brenta G. Diabetes and thyroid disorders. British Journal of Diabetes and Vascular Disease 2010; 10: 172-177
  • 6 Cappelli C, Rotondi M, Pirola I et al. TSH-lowering effect of metformin in type-II-diabetic patients: differences between euthyroid, untreated hypothyroid, and euthyroid on L-T4 therapy patients. Diabetes Care 2009; 32: 1589-1590
  • 7 Chavez JA, Summers SA. Lipid oversupply, selective insulin resistance, and lipotoxicity: molecular mechanisms. Biochim Biophys Acta 2010; 1801; 252-265
  • 8 Chen G, Xu S, Renko K et al. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. J Clin Endocrinol Metab 2012; 97: E510-E520
  • 9 Claret M, Smith MA, Batterham RL et al. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest 2007; 117: 2325-2336
  • 10 Derwahl K. Autoimmunerkrankungen der Schilddrüse. Uni-Med Verlag; Bremen: 2 Auflage, 2011
  • 11 Duntas LH, Orgiazzi J. Brabant G et al. The Interface between thyroid and diabetes mellitus. Clin Endocrinol (Oxf) 2011; 75: 1-9
  • 12 Eledrisi MS, Alshanti MS, Shah MF et al. Overview of the diagnosis and management of diabetic ketoacidosis. Am J Med Sci 2006; 331: 243-251
  • 13 Haymart MR, Repplinger DJ, Leverson GE et al. Higher serum thyroid stimulating hormone level in thyroid nodule patients is associated with greater risks of differentiated thyroid cancer and advanced tumor stage. J Clin Endocrinol Metab 2008; 93: 809-814
  • 14 Isidro ML, Penin MA, Nemina R et al. Metformin reduces thyrotropin levels in obese, diabetic women with primary hypothyroidism on thyroxine replacement therapy. Endocrine 2007; 32: 79-82
  • 15 Ittermann T, Markus MR, Schipf S et al. Metformin inhibits goitrogenous effects of type-II-diabetes. Eur J Endocrinol 2013; 169: 9-15
  • 16 Kadiyala R, Peter R, Okosieme OE. Thyroid dysfunction in patients with diabetes: clinical implications and screening strategies. Int J Clin Pract 2010; 64: 1130-1139
  • 17 La Vecchia C, Negri E, Franceschi S et al. A case-control study of diabetes mellitus and cancer risk. Br J Cancer 1994; 70: 950-953
  • 18 Labuzek K, Suchy D, Gabryel B et al. Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol Rep 2010; 62: 956-965
  • 19 Lambadiari V, Mitrou P, Maratou E et al. Thyroid hormones are positively associated with insulin resistance early in the development of type-II-diabetes. Endocrine 2010; 39: 28-32
  • 20 Leitzmann MF, Brenner A, Moore SC et al. Prospective study of body mass index, physical activity an thyroid cancer. Int J Cancer 2010; 126: 2947-2956
  • 21 Meinhold CL, Ron E, Schonfeld SJ et al. Nonradiation risk factors for thyroid cancer in the US Radiologic Technologists Study. Am J Epidemiol 2010; 171: 242-252
  • 22 Niraula S, Dowling RJ, Ennis M et al. Metformin in early breast cancer: a prospective window of opportunity neoadjuvant study. Breast Cancer Res Treat 2012; 135: 821-830
  • 23 Perros P, McCrimmon RJ, Shaw G et al. Frequency of thyroid dysfunction in diabetic patients: value of annual screening. Diabet Med 1995; 12: 622-627
  • 24 Ramasamy V, Kadiyala R, Fayyaz F et al. Value of baseline serum thyrotropin as a predictor of hypothyroidism in patients with diabetes mellitus. Endocr Pract 2010; 17: 26-32
  • 25 Rezzonico J, Rezzonico M, Pusiol E et al. Introducing the thyroid gland as another victim of the insulin resistance syndrome. Thyroid 2008; 18: 461-464
  • 26 Rezzonico J, Rezzonico M, Pusiol E et al. Metformin treatment for small benign thyroid nodules in patients with insulin resistance. Metab ­Syndr Relat Disord 2010; 9: 69-75
  • 27 Rezzonico JN, Rezzonico M, Pusiol E et al. Increased prevalence of insulin resistance in patients with differentiated thyroid carcinoma. Metab Syndr Relat Disord 2009; 7: 375-380
  • 28 Toner CD, Davis CD, Milner JA. The vitamin D and cancer conundrum: aiming at a moving target. J Am Diet Assoc 2010; 110: 1492-1500
  • 29 Umpierrez GE, Latif KA, Murphy MB et al. Thyroid dysfunction in pa­tients with type-I-diabetes: a longitudinal study. Diabetes Care 2003; 26: 1181-1185
  • 30 Vanderpump MP, Tunbridge WM, French JM et al. The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clin Endocrinol (Oxf) 1995; 43: 55-68
  • 31 Vigersky RA, Filmore-Nassar A, Glass AR.. Thyrotropin suppression by metformin. J Clin Endocrinol Metab 2006; 91: 225-227
  • 32 Zolk O. Current understanding of the pharmacogenomics of metformin. Clin Pharmacol Ther 2009; 56: 595-598