RSS-Feed abonnieren
DOI: 10.1055/s-0033-1355776
Immunologische Behandlungsoptionen bei schizophrenen Störungen
Immunological Treatment Options for SchizophreniaPublikationsverlauf
Publikationsdatum:
07. April 2014 (online)
Zusammenfassung
Der pathophysiologische Mechanismus, der bei Schizophrenie zur dopaminergen Dysfunktion führt, ist nach wie vor unklar. Ein entzündliches Geschehen scheint dabei eine Schlüsselrolle zu spielen. Eine Dysfunktion in der Aktivierung der Typ-1-Immunantwort ist mit verminderter Aktivität des Schlüsselenzyms im Tryptophan-Kynurenin-Metabolismus, Indolamin-2,3-Dioxygenase (IDO), assoziiert, was zu gesteigerter Produktion von Kynureninsäure – eines N-Methyl-D-Aspartat (NMDA)-Antagonisten – im ZNS und verminderter glutamatergen Neurotransmission führt. Die differenzielle Aktivierung von Mikrogliazellen und Astrozyten als funktionellen Trägern des Immunsystems im ZNS, trägt zur Typ-1-/Typ-2-Inbalance bei. Antipsychotika, die vor allem als Dopamin-D2-Rezeptor-Antagonisten wirken, haben verschiedene Nachteile. Die Immuneffekte vieler Antipsychotika rebalancieren teilweise die Dysbalance der Typ-1-/Typ-2-Immunantwort und die Überproduktion von Kynureninsäure. Das entzündliche Geschehen ist verbunden mit höherer Prostaglandin-E2(PGE-2)-Produktion und erhöhter Cyclooxygenase-2(COX-2)-Expression. Zunehmende Evidenz aus klinischen Studien mit COX-2-Inhibitoren weisen auf einen günstigen Effekt antiinflammatorischer Therapie bei Schizophrenie hin, speziell in frühen Stadien der Krankheit. Weitere Optionen von immunmodulatorischer Therapie bei Schizophrenie werden diskutiert.
Abstract
The pathophysiological mechanism leading to dopaminergic dysfunction in schizophrenia is still unclear. Inflammation seems to play a key role. A dysfunction in the activation of the type 1 immune response is associated with decreased activity of the key enzyme of the tryptophan/kynurenine metabolism, indolamine-2.3-dioxygenase (IDO), results in a higher production of kynurenine acid (KYNA) – an N-methyl-D-aspartate antagonist – in the central nervous system (CNS) and decreased glutamatergic neurotransmission. The differential activation of microglial cells and astrocytes, which serve as immune cells in the CNS, contributes to the TH1-TH2 immune imbalance. Antipsychotics, all acting as dopamine D2 receptor antagonists show several shortcomings. The immune effects of antipsychotics rebalance partly the imbalance of the type-1/type-2 immune response and the overproduction of KYNA. The inflammation is associated with higher prostaglandin E2 (PGE2) production and higher cyclo-oxygenase-2 (COX-2) expression. Increasing evidence from clinical studies with COX-2 inhibitors points to an advantageous effect of anti-inflammatory therapy in schizophrenia, especially in the early stages of the disease. Further options of immunomodulatory therapy in schizophrenia are discussed.
-
Literatur
- 1 Müller N, Schwarz MJ. Immune System and Schizophrenia. Curr Immunol Rev 2010; 6: 213-220
- 2 Müller N, Schwarz MJ. Immunological Treatment Options for Schizophrenia. Curr Pharm Biotechnol 2012; 13: 1606-1613
- 3 Müller N, Myint AM, Schwarz MJ. Inflammation in schizophrenia. Am J Psychiatry 2012; (in press)
- 4 Purcell SM, Wray NR, Stone JL et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748-752
- 5 Shi J, Levinson DF, Duan J et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009; 460: 753-757
- 6 Stefansson H, Ophoff RA, Steinberg S et al. Common variants conferring risk of schizophrenia. Nature 2009; 460: 744-747
- 7 Costa E, Dong E, Grayson DR et al. Reviewing the role of DNA (cytosine-5) methyltransferase overexpression in the cortical GABAergic dysfunction associated with psychosis vulnerability. Epigenetics 2007; 2: 29-36
- 8 Kawasaki H, Iwamuro S. Potential roles of histones in host defense as antimicrobial agents. Infect Disord Drug Targets 2008; 8: 195-205
- 9 Fellerhoff B, Laumbacher B, Mueller N et al. Associations between Chlamydophila infections, schizophrenia and risk of HLA-A10. Mol Psychiatry 2007; 12: 264-272
- 10 Gu S, Fellerhoff B, Müller N et al. Paradoxical downregulation of HLA-A expression by IFNgamma associated with schizophrenia and noncoding genes. Immunobiology 2013; 218: 738-744
- 11 Winter C, Djodari-Irani A, Sohr R et al. Prenatal immune activation leads to multiple changes in basal neurotransmitter levels in the adult brain: implications for brain disorders of neurodevelopmental origin such as schizophrenia. Int J Neuropsychopharmacol 2009; 12: 513-524
- 12 Zuckerman L, Weiner I. Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. J Psychiatr Res 2005; 39: 311-323
- 13 Brown AS. Prenatal infection as a risk factor for schizophrenia. Schizophr Bull 2006; 32: 200-202
- 14 Ellman LM, Deicken RF, Vinogradov S et al. Structural brain alterations in schizophrenia following fetal exposure to the inflammatory cytokine interleukin-8. Schizophr Res 2010; 121: 46-54
- 15 Swerdlow NR, van Bergeijk DP, Bergsma F et al. The Effects of Memantine on Prepulse Inhibition. Neuropsychopharmacology 2009; 34: 1854-1864
- 16 Müller N, Schwarz MJ. The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 2007; 12: 988-1000
- 17 Müller N, Schwarz MJ. The immunological basis of glutamatergic disturbance in schizophrenia: towards an integrated view. J Neurotransmission 2007; (Suppl. 72) 269-280
- 18 Spellberg B, Edwards JE Jr. Type 1/Type 2 immunity in infectious diseases. Clin Infect Dis 2001; 32: 76-102
- 19 Mills CD, Kincaid K, Alt JM et al. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000; 164: 6166-6173
- 20 Miller BJ, Buckley P, Seabolt W et al. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 2011; 70: 663-671
- 21 Potvin S, Stip E, Sepehry AA et al. Inflammatory Cytokine Alterations in Schizophrenia: A Systematic Quantitative Review. Biol Psychiatry 2008; 63: 801-808
- 22 Müller N, Empl M, Riedel M et al. Neuroleptic treatment increases soluble IL-2 receptors and decreases soluble IL-6 receptors in schizophrenia. Eur Arch Psychiatry Clin Neurosci 1997; 247: 308-313
- 23 Sperner-Unterweger B, Miller C, Holzner B et al. Measurement of neopterin, kynurenine and tryptophan in sera of schizophrenic patients. In: Müller N, Hrsg Psychiatry, Psychoimmunology, and viruses. Wien, New York: Springer; 1999: 115-119
- 24 Schennach H, Murr C, Gachter E et al. Factors influencing serum neopterin concentrations in a population of blood donors. Clin Chem 2002; 48: 643-645
- 25 Murr C, Widner B, Wirleitner B et al. Neopterin as a marker for immune system activation. Curr Drug Metab 2002; 3: 175-187
- 26 Chittiprol S, Venkatasubramanian G, Neelakantachar N et al. Oxidative stress and neopterin abnormalities in schizophrenia: a longitudinal study. J Psychiatr Res 2010; 44: 310-313
- 27 Duch DS, Woolf JH, Nichol CA et al. Urinary excretion of biopterin and neopterin in psychiatric disorders. Psychiatry Res 1984; 11: 83-89
- 28 Bechter K, Reiber H, Herzog S et al. Cerebrospinal fluid analysis in affective and schizophrenic spectrum disorders: identification of subgroups with immune responses and blood-CSF barrier dysfunction. J Psychiatr Res 2010; 44: 321-330
- 29 Nikkilä HV, Muller K, Ahokas A et al. Increased frequency of activated lymphocytes in the cerebrospinal fluid of patients with acute schizophrenia. Schizophr Res 2001; 49: 99-105
- 30 Korte S, Arolt V, Peters M et al. Increased serum neopterin levels in acutely ill and recovered schizophrenic patients. Schizophr Res 1998; 32: 63-67
- 31 Müller N, Ackenheil M, Hofschuster E et al. Cellular immunity in schizophrenic patients before and during neuroleptic treatment. Psychiatry Res 1991; 37: 147-160
- 32 Schwarz MJ, Riedel M, Ackenheil M et al. Decreased levels of soluble intercellular adhesion molecule-1 (sICAM-1) in unmedicated and medicated schizophrenic patients. Biol Psychiatry 2000; 47: 29-33
- 33 Ogawa A, Yoshizaki A, Yanaba K et al. The differential role of L-selectin and ICAM-1 in Th1-type and Th2-type contact hypersensitivity. J Invest Dermatol 2010; 130: 1558-1570
- 34 Varga G, Nippe N, Balkow S et al. LFA-1 contributes to signal I of T-cell activation and to the production of T(h)1 cytokines. J Invest Dermatol 2010; 130: 1005-1012
- 35 Haack M, Hinze-Selch D, Fenzel T et al. Plasma levels of cytokines and soluble cytokine receptors in psychiatric patients upon hospital admission: effects of confounding factors and diagnosis. J Psychiatr Res 1999; 33: 407-418
- 36 Molholm HB. Hyposensitivity to foreign protein in schizophrenic patients. Psychiatr Quarterly 1942; 16: 565-571
- 37 Riedel M, Spellmann I, Schwarz MJ et al. Decreased T cellular immune response in schizophrenic patients. J Psychiatr Res 2007; 41: 3-7
- 38 Bresee C, Rapaport MH. Persistently increased serum soluble interleukin-2 receptors in continuously ill patients with schizophrenia. Int J Neuropsychopharmacol 2009; 12: 861-865
- 39 Kim YK, Myint AM, Lee BH et al. Th1, Th2 and Th3 cytokine alteration in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28: 1129-1134
- 40 Arolt V, Rothermundt M, Wandinger KP et al. Decreased in vitro production of interferon-gamma and interleukin-2 in whole blood of patients with schizophrenia during treatment. Mol Psychiatry 2000; 5: 150-158
- 41 Wilke I, Arolt V, Rothermundt M et al. Investigations of cytokine production in whole blood cultures of paranoid and residual schizophrenic patients. Eur Arch Psychiatry Clin Neurosci 1996; 246: 279-284
- 42 Avgustin B, Wraber B, Tavcar R. Increased Th1 and Th2 immune reactivity with relative Th2 dominance in patients with acute exacerbation of schizophrenia. Croat Med J 2005; 46: 268-274
- 43 Smith RS, Maes M. The macrophage-T-lymphocyte theory of schizophrenia: additional evidence. Med Hypotheses 1995; 45: 135-141
- 44 Cazzullo CL, Scarone S, Grassi B et al. Cytokines production in chronic schizophrenia patients with or without paranoid behaviour. Prog Neuropsychopharmacol Biol Psychiatry 1998; 22: 947-957
- 45 Lin A, Kenis G, Bignotti S et al. The inflammatory response system in treatment-resistant schizophrenia: increased serum interleukin-6. Schizophr Res 1998; 32: 9-15
- 46 Sperner-Unterweger B, Whitworth A, Kemmler G et al. T-cell subsets in schizophrenia: a comparison between drug-naive first episode patients and chronic schizophrenic patients. Schizophr Res 1999; 38: 61-70
- 47 van Kammen DP, McAllister-Sistilli CG, Kelley ME. Relationship between immune and behavioral measures in schizophrenia. In: Wieselmann G, Hrsg. Current Update in Psychoimmunology. Wien, New York: Springer; 1997: 51-55
- 48 Mittleman BB, Castellanos FX, Jacobsen LK et al. Cerebrospinal fluid cytokines in pediatric neuropsychiatric disease. J Immunol 1997; 159: 2994-2999
- 49 Müller N, Riedel M, Schwarz MJ et al. Immunomodulatory effects of neuroleptics to the cytokine system and the cellular immune system in schizophrenia. In: Wieselmann G, Hrsg. Current update in psychoimmunology. Wien, New York: Springer; 1997: 57-67
- 50 Maes M, Bosmans E, Kenis G et al. In vivo immunomodulatory effects of clozapine in schizophrenia. Schizophr Res 1997; 26: 221-225
- 51 Ozek M, Toreci K, Akkok I et al. Influence of therapy on antibody-formation. Psychopharmacologia 1971; 21: 401-412
- 52 Müller N, Riedel M, Hadjamu M et al. Increase in expression of adhesion molecule receptors on T helper cells during antipsychotic treatment and relationship to blood-brain barrier permeability in schizophrenia. Am J Psychiatry 1999; 156: 634-636
- 53 Pollmächer T, Schuld A, Kraus T et al. On the clinical relevance of clozapine-triggered release of cytokines and soluble cytokine-receptors. Fortschr Neurol Psychiatr 2001; 69 (Suppl. 02) S65-S74
- 54 Suvisaari J, Loo BM, Saarni SE et al. Inflammation in psychotic disorders: a population-based study. Psychiatry Res 2011; 189: 305-311
- 55 Pollmächer T, Haack M, Schuld A et al. Effects of antipsychotic drugs on cytokine networks. J Psychiatr Res 2000; 34: 369-382
- 56 Tanaka KF, Shintani F, Fujii Y et al. Serum interleukin-18 levels are elevated in schizophrenia. Psychiatry Res 2000; 96: 75-80
- 57 Maes M, Bosmans E, De Jongh R et al. Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine 1997; 9: 853-858
- 58 Müller N, Riedel M, Ackenheil M et al. Cellular and humoral immune system in schizophrenia: a conceptual re-evaluation. World J Biol Psychiatry 2000; 1: 173-179
- 59 Brown AS, Begg MD, Gravenstein S et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry 2004; 61: 774-780
- 60 Buka SL, Goldstein JM, Seidman LJ et al. Maternal recall of pregnancy history: accuracy and bias in schizophrenia research. Schizophr Bull 2000; 26: 335-350
- 61 Meyer U, Schwarz MJ, Müller N. Inflammatory processes in schizophrenia: a promising neuroimmunological target for the treatment of negative/cognitive symptoms and beyond. Pharmacol Ther 2011; 132: 96-110
- 62 Gattaz WF, Abrahao AL, Foccacia R. Childhood meningitis, brain maturation and the risk of psychosis. Eur Arch Psychiatry Clin Neurosci 2004; 254: 23-26
- 63 Brown AS. The risk for schizophrenia from childhood and adult infections. Am J Psychiatry 2008; 165: 7-10
- 64 Dalman C, Allebeck P, Gunnell D et al. Infections in the CNS during childhood and the risk of subsequent psychotic illness: a cohort study of more than one million Swedish subjects. Am J Psychiatry 2008; 165: 59-65
- 65 Koponen H, Rantakallio P, Veijola J et al. Childhood central nervous system infections and risk for schizophrenia. Eur Arch Psychiatry Clin Neurosci 2004; 254: 9-13
- 66 Körschenhausen DA, Hampel HJ, Ackenheil M et al. Fibrin degradation products in post mortem brain tissue of schizophrenics: a possible marker for underlying inflammatory processes. Schizophr Res 1996; 19: 103-109
- 67 Bechter K. Mild encephalitis underlying psychiatric disorders – A reconsideration and hypothesis exemplified on Borna disease. Neurol Psychiatry Brain Res 2001; 9: 55-70
- 68 Müller N, Bechter K. The mild encephalitis concept for psychiatric disorders revisited in the light of current psychoneuroimmunological findings. Neurology, Psychiatry and Brain Research 19 2013; 87-101
- 69 Lambertsen KL, Clausen BH, Babcock AA et al. Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 2009; 29: 1319-1330
- 70 Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007; 10: 1387-1394
- 71 Bernstein HG, Steiner J, Bogerts B. Glial cells in schizophrenia: pathophysiological significance and possible consequences for therapy. Expert Rev Neurother 2009; 9: 1059-1071
- 72 Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007; 8: 57-69
- 73 Jack CS, Arbour N, Manusow J et al. TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 2005; 175: 4320-4330
- 74 Downes CE, Crack PJ. Neural injury following stroke: are Toll-like receptors the link between the immune system and the CNS?. Br J Pharmacol 2010; 160: 1872-1888
- 75 Bonartsev PD. An electron microscopic study of typical lymphocytes and atypical cells of peripheral blood in patients with schizophrenia. Zh Nevrol Psikhiatr Im S S Korsakova 2008; 108: 62-68
- 76 Rothermundt M, Arolt V, Weitzsch C et al. Immunological dysfunction in schizophrenia: a systematic approach. Neuropsychobiology 1998; 37: 186-193
- 77 Shintani F, Kanba S, Maruo N et al. Serum interleukin-6 in schizophrenic patients. Life Sci 1991; 49: 661-664
- 78 Maes M, Meltzer HY, Bosmans E. Immune-inflammatory markers in schizophrenia: comparison to normal controls and effects of clozapine. Acta Psychiatr Scand 1994; 89: 346-351
- 79 Maes M, Bosmans E, Calabrese J et al. Interleukin-2 and interleukin-6 in schizophrenia and mania: effects of neuroleptics and mood stabilizers. J Psychiatr Res 1995; 29: 141-152
- 80 Naudin J, Mege JL, Azorin JM et al. Elevated circulating levels of IL-6 in schizophrenia. Schizophr Res 1996; 20: 269-273
- 81 Wong CT, Tsoi WF, Saha N. Acute phase proteins in male Chinese schizophrenic patients in Singapore. Schizophr Res 1996; 22: 165-171
- 82 Maes M, Delange J, Ranjan R et al. Acute phase proteins in schizophrenia, mania and major depression: modulation by psychotropic drugs. Psychiatry Res 1997; 66: 1-11
- 83 Rudduck C, Beckman L, Franzen G et al. C3 and C6 complement types in schizophrenia. Hum Hered 1985; 35: 255-258
- 84 Mayilyan KR, Arnold JN, Presanis JS et al. Increased complement classical and mannan-binding lectin pathway activities in schizophrenia. Neurosci Lett 2006; 404: 336-341
- 85 Drexhage RC, Knijff EM, Padmos RC et al. The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder. Expert Rev Neurother 2010; 10: 59-76
- 86 Rothermundt M, Falkai P, Ponath G et al. Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF. Mol Psychiatry 2004; 9: 897-899
- 87 Steiner J, Bielau H, Brisch R et al. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res 2008; 42: 151-157
- 88 Müller N, Wagner JK, Krause D et al. Impaired monocyte activation in schizophrenia. Psychiatry Res 2012; 198: 341-346
- 89 Bayer TA, Buslei R, Havas L et al. Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett 1999; 271: 126-128
- 90 Radewicz K, Garey LJ, Gentleman SM et al. Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol 2000; 59: 137-150
- 91 Wierzba-Bobrowicz T, Lewandowska E, Lechowicz W et al. Quantitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics. Folia Neuropathol 2005; 43: 81-89
- 92 Na KS, Kim YK. Monocytic, Th1 and th2 cytokine alterations in the pathophysiology of schizophrenia. Neuropsychobiology 2007; 56: 55-63
- 93 van Berckel BN, Bossong MG, Boellaard R et al. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry 2008; 64: 820-822
- 94 Doorduin J, de Vries EF, Willemsen AT et al. Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 2009; 50: 1801-1807
- 95 Takano A, Arakawa R, Ito H et al. Peripheral benzodiazepine receptors in patients with chronic schizophrenia: a PET study with [11C]DAA1106. Int J Neuropsychopharmacol 2010; 13: 943-950
- 96 Fernstrom JD. Effects on the diet on brain neurotransmitters. Metabolism 1977; 26: 207-223
- 97 Erhardt S, Schwieler L, Engberg G. Kynurenic acid and schizophrenia. Adv Exp Med Biol 2003; 527: 155-165
- 98 Erhardt S, Blennow K, Nordin C et al. Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett 2001; 313: 96-98
- 99 Linderholm KR, Skogh E, Olsson SK et al. Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr Bull 2012; 38: 426-432
- 100 Ceresoli-Borroni G, Rassoulpour A, Wu HQ et al. Chronic neuroleptic treatment reduces endogenous kynurenic acid levels in rat brain. J Neural Transm 2006; 113 (10) 1355-1365
- 101 Schwarcz R, Rassoulpour A, Wu HQ et al. Increased cortical kynurenate content in schizophrenia. Biol Psychiatry 2001; 50: 521-530
- 102 Miller CL, Llenos IC, Dulay JR et al. Upregulation of the initiating step of the kynurenine pathway in postmortem anterior cingulate cortex from individuals with schizophrenia and bipolar disorder. Brain Res 2006; 1073-1074: 25-37
- 103 Kim YK, Myint AM, Verkerk R et al. Cytokine changes and tryptophan metabolites in medication-naive and medication-free schizophrenic patients. Neuropsychobiology 2009; 59: 123-129
- 104 Heyes MP, Chen CY, Major EO et al. Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types. Biochem J 1997; 326: 351-356
- 105 Kiss C, Ceresoli-Borroni G, Guidetti P et al. Kynurenate production by cultured human astrocytes. J Neural Transm 2003; 110: 1-14
- 106 Guillemin GJ, Kerr SJ, Smythe GA et al. Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 2001; 78: 842-853
- 107 Chiarugi A, Carpenedo R, Moroni F. Kynurenine disposition in blood and brain of mice: effects of selective inhibitors of kynurenine hydroxylase and of kynureninase. J Neurochem 1996; 67: 692-698
- 108 Wagner von Jauregg J. Fieberbehandlung bei Psychosen. Wien Med Wochenschr 1926; 76: 79-82
- 109 Müller N, Schwarz MJ, Riedel M. COX-2 inhibition in schizophrenia: focus on clinical effects of celecoxib therapy and the role of TNF-alpha. In: Eaton WW, Hrsg. Medical and psychiatric comorbidity over the course of life. Washington DC: American Psychiatric Publishing; 2005: 265-276
- 110 Ross BM, Seguin J, Sieswerda LE. Omega-3 fatty acids as treatments for mental illness: which disorder and which fatty acid?. Lipids Health Dis 2007; 6: 21
- 111 Amminger GP, Schafer MR, Papageorgiou K et al. Long-chain omega-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Arch Gen Psychiatry 2010; 67: 146-154
- 112 Ehrenreich H, Hinze-Selch D, Stawicki S et al. Improvement of cognitive functions in chronic schizophrenic patients by recombinant human erythropoietin. Mol Psychiatry 2007; 12: 206-220
- 113 Wüstenberg T, Begemann M, Bartels C et al. Recombinant human erythropoietin delays loss of gray matter in chronic schizophrenia. Mol Psychiatry 2011; 16: 26-36
- 114 Chaves C, Marque CR, Chaudhry IB et al. Short-term improvement by minocycline added to olanzapine antipsychotic treatment in paranoid schizophrenia. Schizophr Bull 2009; 19 (Suppl. 01) 354
- 115 Ahuja N, Carroll BT. Possible anti-catatonic effects of minocycline in patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31: 968-969
- 116 Mizoguchi H, Takuma K, Fukakusa A et al. Improvement by minocycline of methamphetamine-induced impairment of recognition memory in mice. Psychopharmacology 2008; 196: 233-241
- 117 Levkovitz Y, Mendlovich S, Riwkes S et al. A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia. J Clin Psychiatry 2010; 71: 138-149
- 118 Chaudhry IB, Hallak J, Husain N et al. Minocycline benefits negative symptoms in early schizophrenia: a randomised double-blind placebo-controlled clinical trial in patients on standard treatment. J Psychopharmacol 2012; 26: 1185-1193
- 119 Dickerson FB, Boronow JJ, Stallings CR et al. Reduction of symptoms by valacyclovir in cytomegalovirus-seropositive individuals with schizophrenia. Am J Psychiatry 2003; 160: 2234-2236
- 120 Dickerson FB, Stallings CR, Boronow JJ et al. Double blind trial of adjunctive valacyclovir in individuals with schizophrenia who are seropositive for cytomegalovirus. Schizophr Res 2009; 107: 147-149
- 121 Dickerson FB, Stallings CR, Boronow JJ et al. A double-blind trial of adjunctive azithromycin in individuals with schizophrenia who are seropositive for Toxoplasma gondii. Schizophr Res 2009; 112: 198-199
- 122 Schwieler L, Erhardt S, Erhardt C et al. Prostaglandin-mediated control of rat brain kynurenic acid synthesis – opposite actions by COX-1 and COX-2 isoforms. J Neural Transm 2005; 112: 863-872
- 123 Müller N, Riedel M, Scheppach C et al. Beneficial antipsychotic effects of celecoxib add-on therapy compared to risperidone alone in schizophrenia. Am J Psychiatry 2002; 159: 1029-1034
- 124 Müller N, Riedel M, Dehning S et al. Is the therapeutic effect of celecoxib in schizophrenia depending from duration of disease?. Neuropsychopharmacology 2004; 29: 176
- 125 Litherland SA, Xie XT, Hutson AD et al. Aberrant prostaglandin synthase 2 expression defines an antigen-presenting cell defect for insulin-dependent diabetes mellitus. J Clin Invest 1999; 104: 515-523
- 126 Müller N, Ulmschneider M, Scheppach C et al. COX-2 inhibition as a treatment approach in schizophrenia: immunological considerations and clinical effects of celecoxib add-on therapy. Eur Arch Psychiatry Clin Neurosci 2004; 254: 14-22
- 127 Casolini P, Catalani A, Zuena AR et al. Inhibition of COX-2 reduces the age-dependent increase of hippocampal inflammatory markers, corticosterone secretion, and behavioral impairments in the rat. J Neurosci Res 2002; 68: 337-343
- 128 Zhang Y, Chun ChenD, Long TanY et al. A double-blind, placebo-controlled trial of celecoxib addes to risperidone in first-episode and drug-naive patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2006; 256 (Suppl. 02) 50
- 129 Akhondzadeh S, Tabatabaee M, Amini H et al. Celecoxib as adjunctive therapy in schizophrenia: a double-blind, randomized and placebo-controlled trial. Schizophr Res 2007; 90: 179-185
- 130 Rapaport MH, Delrahim KK, Bresee CJ et al. Celecoxib augmentation of continuously ill patients with schizophrenia. Biol Psychiatry 2005; 57: 1594-1596
- 131 Müller N, Krause D, Dehning S et al. Celecoxib treatment in an early stage of schizophrenia: Results of a randomized, double-blind, placebo-controlled trial of celecoxib augmentation of amisulpride treatment. Schizophr Res 2010; 121: 119-124
- 132 Müller N, Riedel M, Schwarz MJ et al. Clinical effects of COX-2 inhibitors on cognition in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2005; 255: 149-151
- 133 Cumiskey D, Curran BP, Herron CE et al. A role for inflammatory mediators in the IL-18 mediated attenuation of LTP in the rat dentate gyrus. Neuropharmacology 2007; 52: 1616-1623
- 134 Melnikova T, Savonenko A, Wang Q et al. Cycloxygenase-2 activity promotes cognitive deficits but not increased amyloid burden in a model of Alzheimer's disease in a sex-dimorphic pattern. Neuroscience 2006; 141: 1149-1162
- 135 Sommer IE, de Witte L, Begemann M et al. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry 2012; 73: 414-419
- 136 Nitta M, Kishimoto T, Müller N et al. Adjunctive Use of Nonsteroidal Anti-inflammatory Drugs for Schizophrenia: A Meta-analytic Investigation of Randomized Controlled Trials. Schizophr Bull 2013; May 29 [Epub ahead of print]
- 137 Peet M, Brind J, Ramchand CN et al. Two double-blind placebo-controlled pilot studies of eicosapentaenoic acid in the treatment of schizophrenia. Schizophr Res 2001; 49: 243-251
- 138 Berger GE. Ethyl-eicosapentaenoic acid (E-EPA) supplementation in early psychosis: A double-blind randomised placebo-controlled add on study in 80 drug-naive first episode psychosis patients. Int J Neuropsychopharmacol 2004; 8: S422
- 139 Fenton WS, Dickerson F, Boronow J et al. A placebo-controlled trial of omega-3 fatty acid (ethyl eicosapentaenoic acid) supplementation for residual symptoms and cognitive impairment in schizophrenia. Am J Psychiatry 2001; 158: 2071-2074
- 140 Peet M, Horrobin DF. A dose-ranging exploratory study of the effects of ethyl-eicosapentaenoate in patients with persistent schizophrenic symptoms. J Psychiatr Res 2002; 36: 7-18
- 141 Emsley R, Myburgh C, Oosthuizen P et al. Randomized, placebo-controlled study of ethyl-eicosapentaenoic acid as supplemental treatment in schizophrenia. Am J Psychiatry 2002; 159: 1596-1598
- 142 Emsley R, Niehaus DJ, Koen L et al. The effects of eicosapentaenoic acid in tardive dyskinesia: a randomized, placebo-controlled trial. Schizophr Res 2006; 84: 112-120
- 143 Rappart F, Müller N. Celecoxib Add-on Therapy does not have beneficial antipsychotic Effects over Risperidone alone in Schizophrenia. Neuropsychopharmacol 2004; 29 (Suppl. 01) 222