J Knee Surg 2014; 27(02): 119-124
DOI: 10.1055/s-0033-1357493
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Mechanical Properties of Revision ACL Reconstruction

Steve B. Behrens
1   Department of Orthopaedic Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
,
Byung J. Lee
1   Department of Orthopaedic Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
,
David Paller
1   Department of Orthopaedic Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
,
Eve Hoffman
1   Department of Orthopaedic Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
,
Wendell M. R. Heard
1   Department of Orthopaedic Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
,
Keith O. Monchik
1   Department of Orthopaedic Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
,
Paul D. Fadale
1   Department of Orthopaedic Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
› Author Affiliations
Further Information

Publication History

12 February 2013

25 August 2013

Publication Date:
11 October 2013 (online)

Abstract

The aim of this study is to evaluate the mechanical properties of a revision anterior cruciate ligament (ACL) reconstruction after redrilling the original tibial bone tunnel through a retained composite screw compared with initial soft tissue graft fixation. A total of 24 porcine tendons were fixed to porcine tibial tunnels with a 10 × 35 mm composite interference screw. Following the pullout test, a revision tunnel was drilled through the first interference screw and a second graft was fixed in the bone tunnel using a larger composite screw (11 × 35 mm). Following insertion of the revision screw, the graft was reloaded as described for the primary reconstruction. Load versus displacement data were recorded for each test. There were no significant differences between the primary and revision reconstruction constructs for yield load (p = 0.62), linear stiffness (p = 0.18), maximum failure load (p = 0.57), and yield displacement (p = 0.46). These results indicate that the mechanical properties of tibial fixation for ACL reconstruction with a composite screw following a revision provide similar fixation compared with initial reconstruction in this model. Revising a failed composite ACL construct by means of overdrilling and reinstrumenting may provide fixation equivalent to the initial reconstruction.

 
  • References

  • 1 Kamath GV, Redfern JC, Greis PE, Burks RT. Revision anterior cruciate ligament reconstruction. Am J Sports Med 2011; 39 (1) 199-217
  • 2 Bach Jr BR, Tradonsky S, Bojchuk J, Levy ME, Bush-Joseph CA, Khan NH. Arthroscopically assisted anterior cruciate ligament reconstruction using patellar tendon autograft. Five- to nine-year follow-up evaluation. Am J Sports Med 1998; 26 (1) 20-29
  • 3 Hui C, Salmon LJ, Kok A, Maeno S, Linklater J, Pinczewski LA. Fifteen-year outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft for “isolated” anterior cruciate ligament tear. Am J Sports Med 2011; 39 (1) 89-98
  • 4 Salmon LJ, Russell VJ, Refshauge K , et al. Long-term outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft: minimum 13-year review. Am J Sports Med 2006; 34 (5) 721-732
  • 5 Shelbourne KD, Gray T. Anterior cruciate ligament reconstruction with autogenous patellar tendon graft followed by accelerated rehabilitation. A two- to nine-year followup. Am J Sports Med 1997; 25 (6) 786-795
  • 6 Allen CR, Giffin JR, Harner CD. Revision anterior cruciate ligament reconstruction. Orthop Clin North Am 2003; 34 (1) 79-98
  • 7 Bach Jr BR. Revision anterior cruciate ligament surgery. Arthroscopy 2003; 19 (Suppl. 01) 14-29
  • 8 Dunkin BS, Nyland J, Duffee AR, Brunelli JA, Burden R, Caborn D. Soft tissue tendon graft fixation in serially dilated or extraction-drilled tibial tunnels: a porcine model study using high-resolution quantitative computerized tomography. Am J Sports Med 2007; 35 (3) 448-457
  • 9 Nyland J, Fisher B, Brand E, Krupp R, Caborn DN. Osseous deficits after anterior cruciate ligament injury and reconstruction: a systematic literature review with suggestions to improve osseous homeostasis. Arthroscopy 2010; 26 (9) 1248-1257
  • 10 Suchenski M, McCarthy MB, Chowaniec D , et al. Material properties and composition of soft-tissue fixation. Arthroscopy 2010; 26 (6) 821-831
  • 11 Brand Jr JC, Nyland J, Caborn DN, Johnson DL. Soft-tissue interference fixation: bioabsorbable screw versus metal screw. Arthroscopy 2005; 21 (8) 911-916
  • 12 Zantop T, Weimann A, Schmidtko R, Herbort M, Raschke MJ, Petersen W. Graft laceration and pullout strength of soft-tissue anterior cruciate ligament reconstruction: in vitro study comparing titanium, poly-d,l-lactide, and poly-d,l-lactide-tricalcium phosphate screws. Arthroscopy 2006; 22 (11) 1204-1210
  • 13 Micucci CJ, Frank DA, Kompel J, Muffly M, Demeo PJ, Altman GT. The effect of interference screw diameter on fixation of soft-tissue grafts in anterior cruciate ligament reconstruction. Arthroscopy 2010; 26 (8) 1105-1110
  • 14 Hosseini A, Gill TJ, Van de Velde SK, Li G. Estimation of in vivo ACL force changes in response to increased weightbearing. J Biomech Eng 2011; 133 (5) 051004
  • 15 Sakane M, Fox RJ, Woo SL, Livesay GA, Li G, Fu FH. In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. J Orthop Res 1997; 15 (2) 285-293
  • 16 Järvinen TL, Alami GB, Karlsson J. Anterior cruciate ligament graft fixation—a myth busted?. Arthroscopy 2010; 26 (5) 681-684
  • 17 Emond CE, Woelber EB, Kurd SK, Ciccotti MG, Cohen SB. A comparison of the results of anterior cruciate ligament reconstruction using bioabsorbable versus metal interference screws: a meta-analysis. J Bone Joint Surg Am 2011; 93 (6) 572-580
  • 18 Kaeding C, Farr J, Kavanaugh T, Pedroza A. A prospective randomized comparison of bioabsorbable and titanium anterior cruciate ligament interference screws. Arthroscopy 2005; 21 (2) 147-151
  • 19 Myers P, Logan M, Stokes A, Boyd K, Watts M. Bioabsorbable versus titanium interference screws with hamstring autograft in anterior cruciate ligament reconstruction: a prospective randomized trial with 2-year follow-up. Arthroscopy 2008; 24 (7) 817-823
  • 20 Barber FA, Dockery WD. Long-term absorption of poly-L-lactic acid interference screws. Arthroscopy 2006; 22 (8) 820-826
  • 21 Barber FA, Dockery WD. Long-term absorption of beta-tricalcium phosphate poly-L-lactic acid interference screws. Arthroscopy 2008; 24 (4) 441-447
  • 22 Ma CB, Francis K, Towers J, Irrgang J, Fu FH, Harner CH. Hamstring anterior cruciate ligament reconstruction: a comparison of bioabsorbable interference screw and endobutton-post fixation. Arthroscopy 2004; 20 (2) 122-128
  • 23 Radford MJ, Noakes J, Read J, Wood DG. The natural history of a bioabsorbable interference screw used for anterior cruciate ligament reconstruction with a 4-strand hamstring technique. Arthroscopy 2005; 21 (6) 707-710
  • 24 Warden WH, Chooljian D, Jackson DW. Ten-year magnetic resonance imaging follow-up of bioabsorbable poly-L-lactic acid interference screws after anterior cruciate ligament reconstruction. Arthroscopy 2008; 24 (3) e1-e3
  • 25 Colosimo AJ, Heidt Jr RS, Traub JA, Carlonas RL. Revision anterior cruciate ligament reconstruction with a reharvested ipsilateral patellar tendon. Am J Sports Med 2001; 29 (6) 746-750
  • 26 Fox JA, Pierce M, Bojchuk J, Hayden J, Bush-Joseph CA, Bach Jr BR. Revision anterior cruciate ligament reconstruction with nonirradiated fresh-frozen patellar tendon allograft. Arthroscopy 2004; 20 (8) 787-794
  • 27 Johnson DL, Swenson TM, Irrgang JJ, Fu FH, Harner CD. Revision anterior cruciate ligament surgery: experience from Pittsburgh. Clin Orthop Relat Res 1996; (325) 100-109
  • 28 Noyes FR, Barber-Westin SD. Revision anterior cruciate surgery with use of bone-patellar tendon-bone autogenous grafts. J Bone Joint Surg Am 2001; 83-A (8) 1131-1143
  • 29 O'Shea JJ, Shelbourne KD. Anterior cruciate ligament reconstruction with a reharvested bone-patellar tendon-bone graft. Am J Sports Med 2002; 30 (2) 208-213
  • 30 Uribe JW, Hechtman KS, Zvijac JE, Tjin-A-Tsoi EW. Revision anterior cruciate ligament surgery: experience from Miami. Clin Orthop Relat Res 1996; (325) 91-99
  • 31 Park DK, Fogel HA, Bhatia S , et al. Tibial fixation of anterior cruciate ligament allograft tendons: comparison of 1-, 2-, and 4-stranded constructs. Am J Sports Med 2009; 37 (8) 1531-1538
  • 32 Tetsumura S, Fujita A, Nakajima M, Abe M. Biomechanical comparison of different fixation methods on the tibial side in anterior cruciate ligament reconstruction: a biomechanical study in porcine tibial bone. J Orthop Sci 2006; 11 (3) 278-282
  • 33 Chang HC, Nyland J, Nawab A, Burden R, Caborn DN. Biomechanical comparison of the bioabsorbable RetroScrew system, BioScrew XtraLok with stress equalization tensioner, and 35-mm Delta Screws for tibialis anterior graft-tibial tunnel fixation in porcine tibiae. Am J Sports Med 2005; 33 (7) 1057-1064