Erfahrungsheilkunde 2014; 63(1): 36-41
DOI: 10.1055/s-0033-1357603
Arterielle Hypertonie
© Karl F. Haug Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG

Kombinierte Fastentherapie zur Behandlung der primären arteriellen Hypertonie

Eva Lischka
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
21. Februar 2014 (online)

Zusammenfassung

Falsche Ernährung, Stress, Nikotin- und Alkoholkonsum spielen eine entscheidende Rolle bei der Entstehung der primären arteriellen Hypertonie. Weltweit starben 2010 rund 9,4 Mio. Menschen an den Folgen eines zu hohen Blutdrucks. Fasten hat eine positive Wirkung auf die Erkrankung und sich als Therapiebaustein bewährt. Neben den theoretischen Hintergründen und den neuesten Erkenntnissen der Blutdruckforschung stellt die Autorin 3 Patienten und ihren erstaunlichen Therapieverlauf vor.

Abstract

Wrong diet, stress, tobacco and alcohol consumption play an important role in the development of primary arterial hypertension. In 2010 about 9.6 million people worldwide died as a result of high blood pressure. Fasting has a positive effect on the disease and has proven its worth as an element of therapy. In addition to the theoretic backgrounds and the latest findings in blood pressure research, the author presents 3 patients and the astonishing course of their treatment.

 
  • Literatur

  • 1 Lim SS, Vos T, Flaxman AD et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2224-60
  • 2 Wilhelmi de Toledo F, Buchinger A, Burggrabe H et al. Leitlinien zur Fastentherapie. Forsch Komplementmed 2002; 9: 189-198
  • 3 Owen OE, Smalley KJ, D’Alessio DA et al. Protein, fat, and carbohydrate requirements during starvation: anaplerosis and catplerosis. Am J Clin Nutr 1998; 68: 12-34
  • 4 Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med 1998; 339: 321-328
  • 5 Potter LR, Abbey-Hosh S, Dickey DN. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocrine Reviews 2006; 27: 47-72
  • 6 Melo LG, Veress AT, Chong CK et al. Salt-sensitive hypertension in ANP knockout mice: potential role of abnormal plasma renin activity. Am J Physiol 274: R255-R261
  • 7 Maoz E, Shaamiss A, Peleg E et al. The role of atrial natriuretic peptide in natrioresis of fasting. J Hypertens 1992; 10: 1041-4
  • 8 McCord J, Mundy BJ, Hudson MP et al. Relationship between obesity and B-Type natriuretic peptide levels. Arch Intern Med 2004; 164: 2247-2252
  • 9 Neeland IJ, Winders BR, Ayers CR et al. Higher natriuretic peptide levels associate with a favourable adipose tissue distribution profile. J Am Coll Cardiol 2013; 62: 752-60
  • 10 Birkenfeld AL, Budziarek P, Boschmann M et al. Atrial natriuretic peptide induces postbrandial lipid oxidation in humans. Diabetes 2008; 57: 3199-3204
  • 11 Miyashita K, Itoh H, Tsujimoto H et al. natriuretic peptides/cGMP/cGMP-dependent protein kinase cascades promote muscle mitochondrial biogenesis and prevent obesity. Diabetes 2009; 58: 2880-2892
  • 12 Petersen KF, Dufour S, Befroy D et al. Impaired mitochondrial activity in the insuline-resistant offspring of patients with type 2 diabetes. N Engl J Med 2004; 350: 664-671
  • 13 Kelley DE, He J, Menshikova EV et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002; 51: 2944-2950
  • 14 Sarzani R, Paci VM, Zigaretti CM et al. Fasting inhibits natriuretic peptides clearence receptor expression in rat adipose tissue. J Hypertens 1995; 13: 1241-1246
  • 15 Dessi-Fulgheri P, Sarzani R, Serenelli M et al. Low calorie diet enhances renal, hemodynamic, and humoral effects of exogenous atrial natriuretic peptide in obese hypertensives. Hypertens 1999; 33: 658-662
  • 16 Engeli S, Sharma AM. The renin-angiotensin system and natriuretic peptides in obesity-associated hypertension. J Mol Med 2001; 79: 21-29
  • 17 Goehler L, Hahnemann T, Michael N et al. Reduction of plasma catecholamines inhumans during clinically controlled severe underfeeding. Prev Med 2000; 30: 95-102
  • 18 Moro C, Pillard F, De Glisezinski I et al. Training enhances ANP lipid-mobililizing action in adipose tissue of overweight men. Med Sci Sports Exerc 2005; 37: 1126-1132
  • 19 Wiesner S, Birkenfeld AL, Engeli S et al. Neurohumoral and metabolic response to exercise in water. Horm Metab Res 2010; 42: 334-339
  • 20 Michalsen A, Hoffmann B, Moebus S et al. Incorporation of fasting therapy in an integrative medicine ward: evaluation of outcome, safety, and effects on lifestyle adherence in a large prospective cohort study. J Altern Complement Med 2005; 1: 601-607
  • 21 Goldhamer AC, Lisle DJ et al. Medically supervised water-only fasting in the treatment of hypertension. J Manipulative Physiol Ther 2001; 24: 335-9
  • 22 Müller H, Wilhelmi de Toledo F, Schuck P et al. Blutdrucksenkung durch Fasten bei adipösen und nichtadipösen Hypertonikern. Perfusion 2001; 14: 108-112
  • 23 Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med 2005; 352: 2211-21
  • 24 Engeli S, Reineke J, Birkenfeld A et al. Regulation of fatty acid and glucose metabolism by natriuretic peptides. Adipositas 2013; 7: 154-158