J Wrist Surg 2013; 02(04): 315-318
DOI: 10.1055/s-0033-1357761
Special Focus Section: New Horizons in Wrist Surgery
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Stem Cells and Biological Approaches to Treatment of Wrist Problems

Alphonsus K. S. Chong
1   Department of Hand and Reconstructive Microsurgery, National University Hospital, Singapore
2   Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
,
Min He
1   Department of Hand and Reconstructive Microsurgery, National University Hospital, Singapore
2   Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
› Author Affiliations
Further Information

Publication History

Publication Date:
08 November 2013 (online)

Abstract

Stem cells are being intensively studied for their potential applications in clinical medicine. Mesenchymal stem cells (MSCs) are an important subset of stem cells which are attractive for application in musculoskeletal disorders. In this article, we review the characteristics of these MSCs that are relevant to clinical practice but that are still largely experimental in nature.

 
  • References

  • 1 Mertes H, Pennings G. Cross-border research on human embryonic stem cells: legal and ethical considerations. Stem Cell Rev 2009; 5 (1) 10-17
  • 2 Friedenstein AJ, Latzinik NW, Grosheva AG, Gorskaya UF. Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges. Exp Hematol 1982; 10 (2) 217-227
  • 3 Dominici M, Le Blanc K, Mueller I , et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8 (4) 315-317
  • 4 Steinert AF, Rackwitz L, Gilbert F, Nöth U, Tuan RS. Concise review: the clinical application of mesenchymal stem cells for musculoskeletal regeneration: current status and perspectives. Stem Cells Transl Med 2012; 1 (3) 237-247
  • 5 Gregory CA, Prockop DJ, Spees JL. Non-hematopoietic bone marrow stem cells: molecular control of expansion and differentiation. Exp Cell Res 2005; 306 (2) 330-335
  • 6 Neuhuber B, Swanger SA, Howard L, Mackay A, Fischer I. Effects of plating density and culture time on bone marrow stromal cell characteristics. Exp Hematol 2008; 36 (9) 1176-1185
  • 7 Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 2001; 98 (8) 2396-2402
  • 8 Hutson EL, Boyer S, Genever PG. Rapid isolation, expansion, and differentiation of osteoprogenitors from full-term umbilical cord blood. Tissue Eng 2005; 11 (9-10) 1407-1420
  • 9 Zuk PA, Zhu M, Mizuno H , et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7 (2) 211-228
  • 10 Shirasawa S, Sekiya I, Sakaguchi Y, Yagishita K, Ichinose S, Muneta T. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells. J Cell Biochem 2006; 97 (1) 84-97
  • 11 Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 2007; 327 (3) 449-462
  • 12 Behrens P, Bosch U, Bruns J , et al; German Society for Traumatology; German Society for Orthopedic Surgery. Indications and implementation of recommendations of the working group “Tissue Regeneration and Tissue Substitutes” for autologous chondrocyte transplantation (ACT) [in German]. Z Orthop Ihre Grenzgeb 2004; 142 (5) 529-539
  • 13 Grigolo B, Roseti L, De Franceschi L , et al. Molecular and immunohistological characterization of human cartilage two years following autologous cell transplantation. J Bone Joint Surg Am 2005; 87 (1) 46-57
  • 14 Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R. Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J Bone Joint Surg Am 2003; 85-A (2) 185-192
  • 15 Demoor M, Maneix L, Ollitrault D , et al. Deciphering chondrocyte behaviour in matrix-induced autologous chondrocyte implantation to undergo accurate cartilage repair with hyaline matrix. Pathol Biol (Paris) 2012; 60 (3) 199-207
  • 16 Danisovic L, Varga I, Polák S , et al. Comparison of in vitro chondrogenic potential of human mesenchymal stem cells derived from bone marrow and adipose tissue. Gen Physiol Biophys 2009; 28 (1) 56-62
  • 17 Koga H, Muneta T, Nagase T , et al. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res 2008; 333 (2) 207-215
  • 18 Saw KY, Anz A, Siew-Yoke Jee C , et al. Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy 2013; 29 (4) 684-694
  • 19 Saw KY, Anz A, Merican S , et al. Articular cartilage regeneration with autologous peripheral blood progenitor cells and hyaluronic acid after arthroscopic subchondral drilling: a report of 5 cases with histology. Arthroscopy 2011; 27 (4) 493-506
  • 20 Kuroda R, Ishida K, Matsumoto T , et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage 2007; 15 (2) 226-231
  • 21 Giannini S, Buda R, Vannini F, Cavallo M, Grigolo B. One-step bone marrow-derived cell transplantation in talar osteochondral lesions. Clin Orthop Relat Res 2009; 467 (12) 3307-3320
  • 22 Haleem AM, Singergy AA, Sabry D , et al. The clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartilage 2010; 1 (4) 253-261
  • 23 Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science 2012; 338 (6109) 917-921
  • 24 Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kadiyala S. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 1998; 16 (2) 155-162
  • 25 Petite H, Viateau V, Bensaïd W , et al. Tissue-engineered bone regeneration. Nat Biotechnol 2000; 18 (9) 959-963
  • 26 Lee HB, Chung YS, Heo SY, Kim NS. Augmentation of bone healing of nonunion fracture using stem cell based tissue engineering in a dog: a case report. Veterinární Medicína 2009; 54 (4) 198-203
  • 27 Connolly JF, Guse R, Tiedeman J, Dehne R. Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clin Orthop Relat Res 1991; (266) 259-270
  • 28 Hernigou P, Poignard A, Beaujean F, Rouard H. Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 2005; 87 (7) 1430-1437
  • 29 Goel A, Sangwan SS, Siwach RC, Ali AM. Percutaneous bone marrow grafting for the treatment of tibial non-union. Injury 2005; 36 (1) 203-206
  • 30 Bajada S, Harrison PE, Ashton BA, Cassar-Pullicino VN, Ashammakhi N, Richardson JB. Successful treatment of refractory tibial nonunion using calcium sulphate and bone marrow stromal cell implantation. J Bone Joint Surg Br 2007; 89 (10) 1382-1386
  • 31 Gan Y, Dai K, Zhang P, Tang T, Zhu Z, Lu J. The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials 2008; 29 (29) 3973-3982
  • 32 Young BH, Peng H, Huard J. Muscle-based gene therapy and tissue engineering to improve bone healing. Clin Orthop Relat Res 2002; (403, Suppl): S243-S251
  • 33 Mokbel AN, El Tookhy OS, Shamaa AA, Rashed LA, Sabry D, El Sayed AM. Homing and reparative effect of intra-articular injection of autologus mesenchymal stem cells in osteoarthritic animal model. BMC Musculoskelet Disord 2011; 12: 259
  • 34 Frisbie DD, Kisiday JD, Kawcak CE, Werpy NM, McIlwraith CW. Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. J Orthop Res 2009; 27 (12) 1675-1680
  • 35 Huang JI, Durbhakula MM, Angele P, Johnstone B, Yoo JU. Lunate arthroplasty with autologous mesenchymal stem cells in a rabbit model. J Bone Joint Surg Am 2006; 88 (4) 744-752
  • 36 Berner A, Pfaller C, Dienstknecht T , et al. Arthroplasty of the lunate using bone marrow mesenchymal stromal cells. Int Orthop 2011; 35 (3) 379-387
  • 37 Shigematsu K, Hattori K, Kobata Y, Kawamura K, Yajima H, Takakura Y. Treatment of Kienböck's disease with cultured stem cell-seeded hybrid tendon roll interposition arthroplasty: experimental study. J Orthop Sci 2006; 11 (2) 198-203
  • 38 Ogawa T, Ishii T, Mishima H , et al. Effectiveness of bone marrow transplantation for revitalizing a severely necrotic small bone: experimental rabbit model. J Orthop Sci 2010; 15 (3) 381-388
  • 39 Ikeguchi R, Kakinoki R, Aoyama T , et al. Regeneration of osteonecrosis of canine scapho-lunate using bone marrow stromal cells: possible therapeutic approach for Kienböck disease. Cell Transplant 2006; 15 (5) 411-422
  • 40 Hartung T. Thoughts on limitations of animal models. Parkinsonism Relat Disord 2008; 14 (Suppl. 02) S81-S83