Klin Monbl Augenheilkd 2014; 231(2): 121-126
DOI: 10.1055/s-0033-1360242
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Unstable Oxygen Supply and Glaucoma

Instabile Sauerstoffversorgung und Glaukom
K. Konieczka
1   Department of Ophthalmology, University of Basel, Switzerland
,
S. Fränkl
2   Department of Ophthalmology, University of Bern, Switzerland
,
M. G. Todorova
1   Department of Ophthalmology, University of Basel, Switzerland
,
P. B. Henrich
1   Department of Ophthalmology, University of Basel, Switzerland
› Author Affiliations
Further Information

Publication History

received 18 October 2013

accepted 28 November 2013

Publication Date:
15 February 2014 (online)

Abstract

The pathogenesis of the glaucomatous optic neuropathy (GON) is an ongoing bone of contention. While the role of intraocular pressure (IOP) is well known, it is also clear that a variety of other factors, particularly those of a vascular nature, are involved as well. In contrast to other eye diseases, it is an unstable oxygen supply, as opposed to chronic hypoxia, that contributes to GON. The major cause of fluctuations in the local oxygen tension is an unstable ocular blood flow (OBF). OBF, in turn, fluctuates if the IOP spikes, blood pressure drops, or OBF autoregulation is defective. The main reason for disturbed autoregulation is a primary vascular dysregulation (PVD), particularly in the context of the so-called Flammer syndrome. Unstable oxygen tension leads to local oxidative stress with many detrimental effects, such as the activation of glial cells, which alters their morphology and gene expression. As a consequence, the local concentrations of nitric oxide and the metalloproteinases increase. The metalloproteinases digest extracellular matrix and thereby contribute to tissue remodelling. The short-lived nitric oxide easily diffuses into the neighbouring neuronal axons, allowing a fusion with the superoxide anion and thereby generating the cell-damaging peroxynitrite. Both this tissue remodelling and damage of the axons contribute to the development and progression of GON.

Zusammenfassung

Die Pathogenese der glaukomatösen Optikusneuropathie (GON) wird noch immer kontrovers diskutiert. Die Bedeutung des Augeninnendrucks für die Entstehung von GON ist unbestritten. Es ist aber ebenso unbestritten, dass auch andere Faktoren, insbesondere vaskuläre Faktoren, eine Rolle spielen. Entgegen älterer Auffassung ist es aber weniger die Hypoxie als vielmehr die instabile Sauerstoffversorgung, v. a. bedingt durch Schwankungen in der Augendurchblutung, die zur GON beiträgt. Schwankungen der Augendurchblutung wiederum gibt es bei Augendruckspitzen, Blutdruckabfällen und einer gestörten Autoregulation der okularen Zirkulation. Eine häufige Ursache der gestörten Autoregulation ist die vaskuläre Dysregulation im Rahmen eines Flammer-Syndroms. Eine schwankende Sauerstoffkonzentration führt zu lokalem oxidativen Stress. Im Auge betrifft das vor allem die Mitochondrien des Sehnervenkopfes. Denn dort haben wir nicht nur besonders viele Mitochondrien wegen der nicht myelinisierten Axone, sondern auch besonders häufig Schwankungen der Durchblutung. Die hypoxieresistenten Astrozyten werden aber sowohl durch mechanische Belastung wie auch durch oxidativen Stress aktiviert. Dadurch ändern sie nicht nur ihre Morphologie, sondern auch ihre Genexpression, was u. a. zur vermehrten Bildung von Stickstoffmonoxid und Metalloproteinasen führt. Letztere verdauen die extrazelluläre Matrix und tragen so zum Umbau des Sehnervenkopfs bei. Stickstoffmonoxid wiederum kann aus den Astrozyten in die neuronalen Axone diffundieren, wo es mit dem Hyperoxid-Anion fusioniert und dadurch das zelltoxische Peroxynitrit bildet. All diese Mechanismen tragen wesentlich zur Entstehung und Progression der GON bei.

 
  • References

  • 1 Flammer J, Mozaffarieh M. Autoregulation, a balancing act between supply and demand. Can J Ophthalmol 2008; 43: 317-321
  • 2 Flammer J, Orgul S, Costa VP et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 2002; 21: 359-393
  • 3 Lozano E, Segarra M, Corbera-Bellalta M et al. Increased expression of the endothelin system in arterial lesions from patients with giant-cell arteritis: association between elevated plasma endothelin levels and the development of ischaemic events. Ann Rheum Dis 2010; 69: 434-442
  • 4 Saner H, Wurbel H, Mahler F et al. Microvasculatory evaluation of vasospastic syndromes. Adv Exp Med Biol 1987; 220: 215-218
  • 5 Flammer J. The vascular concept of glaucoma. Surv Ophthalmol 1994; 38 Suppl: S3-S6
  • 6 Flammer J, Pache M, Resink T. Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Prog Retin Eye Res 2001; 20: 319-349
  • 7 Flammer J, Konieczka K, Flammer AJ. The primary vascular dysregulation syndrome: implications for eye diseases. EPMA J 2013; 4: 14
  • 8 Konieczka K, Fränkl S. Primäre vaskuläre Dysregulation und Glaukom (Primary Vascular Dysregulation and Glaucoma). Z prakt Augenheilkd 2013; 34: 207-215
  • 9 Flammer J, Konieczka K, Bruno RM et al. The eye and the heart. Eur Heart J 2013; 34: 1270-1278
  • 10 Flammer J. Glaucoma. 3rd. ed. Bern: Hogrefe & Huber; 2006
  • 11 Gherghel D, Orgul S, Gugleta K et al. Retrobulbar blood flow in glaucoma patients with nocturnal over-dipping in systemic blood pressure. Am J Ophthalmol 2001; 132: 641-647
  • 12 Pache M, Krauchi K, Cajochen C et al. Cold feet and prolonged sleep-onset latency in vasospastic syndrome. Lancet 2001; 358: 125-126
  • 13 Teuchner B, Orgul S, Ulmer H et al. Reduced thirst in patients with a vasospastic syndrome. Acta Ophthalmol Scand 2004; 82: 738-740
  • 14 Wunderlich K, Zimmerman C, Gutmann H et al. Vasospastic persons exhibit differential expression of ABC-transport proteins. Mol Vis 2003; 9: 756-761
  • 15 Mozaffarieh M, Hauenstein D, Schoetzau A et al. Smell perception in normal tension glaucoma patients. Mol Vis 2010; 16: 506-510
  • 16 Palmer KT, Griffin MJ, Syddall HE et al. Raynaudʼs phenomenon, vibration induced white finger, and difficulties in hearing. Occup Environ Med 2002; 59: 640-642
  • 17 Mozaffarieh M, Fontana Gasio P, Schotzau A et al. Thermal discomfort with cold extremities in relation to age, gender, and body mass index in a random sample of a Swiss urban population. Popul Health Metr 2010; 8: 17
  • 18 Gherghel D, Orgul S, Dubler B et al. Is vascular regulation in the central retinal artery altered in persons with vasospasm?. Arch Ophthalmol 1999; 117: 1359-1362
  • 19 Oettli A, Gugleta K, Kochkorov A et al. Rigidity of retinal vessel in untreated eyes of normal tension primary open-angle glaucoma patients. J Glaucoma 2011; 20: 303-306
  • 20 Gugleta K, Zawinka C, Rickenbacher I et al. Analysis of retinal vasodilation after flicker light stimulation in relation to vasospastic propensity. Invest Ophthalmol Vis Sci 2006; 47: 4034-4041
  • 21 Grieshaber MC, Terhorst T, Flammer J. The pathogenesis of optic disc splinter haemorrhages: a new hypothesis. Acta Ophthalmol Scand 2006; 84: 62-68
  • 22 Yeghiazaryan K, Flammer J, Orgul S et al. Vasospastic individuals demonstrate significant similarity to glaucoma patients as revealed by gene expression profiling in circulating leukocytes. Mol Vis 2009; 15: 2339-2348
  • 23 Flammer J, Haefliger IO, Orgul S et al. Vascular dysregulation: a principal risk factor for glaucomatous damage?. J Glaucoma 1999; 8: 212-219
  • 24 Messerli J, Flammer J. [Central vein thrombosis in younger patients]. Klin Monatsbl Augenheilkd 1996; 208: 303-305
  • 25 Kaiser HJ, Flammer J, Messerli J. Vasospasm – a risk factor for nonarteric anterior ischemic optic neuropathy?. Neuroophthalmology 1996; 16: 5-10
  • 26 Flammer J, Kaiser H, Haufschild T. Susac syndrome: a vasospastic disorder?. Eur J Ophthalmol 2001; 11: 175-179
  • 27 Konieczka K, Flammer AJ, Todorova M et al. Retinitis pigmentosa and ocular blood flow. EPMA J 2012; 3: 17
  • 28 Flammer J. [Glaucomatous optic neuropathy: a reperfusion injury]. Klin Monatsbl Augenheilkd 2001; 218: 290-291
  • 29 Yang J, Yang P, Tezel G et al. Induction of HLA-DR expression in human lamina cribrosa astrocytes by cytokines and simulated ischemia. Invest Ophthalmol Vis Sci 2001; 42: 365-371
  • 30 Wang L, Cioffi GA, Cull G et al. Immunohistologic evidence for retinal glial cell changes in human glaucoma. Invest Ophthalmol Vis Sci 2002; 43: 1088-1094
  • 31 Flammer J, Mozaffarieh M. What is the present pathogenetic concept of glaucomatous optic neuropathy?. Surv Ophthalmol 2007; 52 Suppl 2: S162-S173
  • 32 Agapova OA, Ricard CS, Salvador-Silva M et al. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human optic nerve head astrocytes. Glia 2001; 33: 205-216
  • 33 Flammer J, Mozaffarieh M, Bebie H. Basic Sciences in Ophthalmology – Physics and Chemistry. Heidelberg: Springer; 2013
  • 34 Quigley HA, Green WR. The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology 1979; 86: 1803-1830