Subscribe to RSS
DOI: 10.1055/s-0033-1360308
Hornhautendothelzelldichte in Abhängigkeit vom Schweregrad der Pseudoexfoliation
Corneal Endothelial Cell Density and its Correlation with the Severity of PseudoexfoliationPublication History
eingereicht 15 August 2013
akzeptiert 07 January 2014
Publication Date:
15 February 2014 (online)
Zusammenfassung
Einleitung: Das Pseudoexfoliations-(PEX-)Syndrom ist eine häufige, altersabhängige Erkrankung, die mit einer multifokalen Ablagerung von fibrillärem PEX-Material in intra- und extraokulären Geweben einhergeht. Als Folge treten u. a. ein sekundäres chronisches Offenwinkelglaukom und ein kornealer Endothelzellverlust auf. Die vorliegende Studie analysiert die Korrelation des PEX-Ausprägungsgrads mit der kornealen Endothelzelldichte (kEZD), bei nicht vorliegendem und bei nachgewiesenem Sekundärglaukom.
Material und Methoden: Es erfolgte eine Untersuchung von jeweils einem Auge an 109 kaukasischen Probanden (Durchschnittsalter 71,7 Jahre). Die Probanden wurden anhand spaltlampenmikroskopisch sichtbarer PEX-Ablagerungen auf der Linse (mild oder ausgeprägt) sowie in Bezug auf das Nicht- bzw. Vorhandensein eines Glaukoms in 4 Studiengruppen eingeteilt. Die Kontrollgruppen umfassten gesunde Probanden und Probanden mit primär chronischem Offenwinkelglaukom (POWG). Die kEZD-Messung erfolgte mittels Endothelzell-Spiegelmikroskopie (SeaEagle).
Ergebnisse: Alle Studiengruppen sowie die POWG-Gruppe zeigten eine signifikante kEZD-Reduktion im Vergleich zur gesunden Kontrollgruppe: POWG: 6,0 %; PEX-Syndrom: mild 5,5 % und ausgeprägt 11,0 % sowie PEX-Glaukom: mild 7,7 % und ausgeprägt 12,3 %. Weiterhin lag die kEZD beim ausgeprägten PEX-Syndrom um 5,4 % und ausgeprägten PEX-Glaukom um 6,8 % signifikant niedriger als bei der POWG-Gruppe. Auch nach Bonferroni-Korrektur war die kEZD mit zunehmendem PEX-Ausprägungsgrad, unabhängig vom Vorliegen eines Glaukoms, gegenüber beiden Kontrollgruppen signifikant verringert. Die Betrachtung des gesamten Probandenkollektivs ergab lediglich eine schwache Korrelation von mittlerem Augeninnendruck und mittlerer kEZD.
Schlussfolgerung: Die Ergebnisse vorliegender Studie zeigen eine abnehmende kEZD mit zunehmenden PEX-Ausprägungsgrad, unabhängig davon, ob ein Glaukom vorliegt oder nicht. Der Einfluss des PEX-Syndroms scheint dabei größer als der Einfluss des Augeninnendrucks zu sein.
Abstract
Introduction: Pseudoexfoliation (PEX) syndrome is a common, age-related disease which is associated with the multifocal deposition of fibrillar PEX material in intra- and extraocular tissues. Subsequently among others second chronic open-angle glaucoma and corneal endothelial cell loss occurs. The present study analysed whether there is a correlation between the stage of the PEX process and corneal endothelial cell density (cECD), regardless of the non-existence or proof of secondary glaucoma.
Materials and Methods: One eye of 109 Caucasian subjects (mean age 71.7 years) was examined by slit-lamp microscopy and classified based on visible PEX deposits on the lens (mild and severe) and presence of glaucoma in 4 study groups. The control groups were healthy subjects and patients with primary open angle glaucoma (POAG). The cECD was measured with the endothelial cell mirror microscope (SeaEagle).
Results: All study groups and the POAG group showed a significant cECD reduction compared to the healthy control group: POAG: 6.0 %; PEX syndrome: mild 5.5 % and severe 11.0 %, PEX glaucoma: mild 7.7 % and severe 12.3 %. Further the cECD was significantly lower compared to the POAG group in severe PEX syndrome by 5.4 % and in severe PEX glaucoma by 6.8 %. cECD significantly decreased with increasing PEX stage independently of the presence of glaucoma. These differences remained statistically significant after Bonferroni-Holm correction. The analysis of the entire group of test subjects showed only a weak correlation between mean intraocular pressure and mean cECD.
Conclusion: The results of this study showed a decreasing cECD with increasing PEX stage, regardless of whether glaucoma is present or not. The influence of the PEX process appears to be more pronounced than the influence of intraocular pressure.
-
Literatur
- 1 Naumann GO, Schlotzer-Schrehardt U, Kuchle M. Pseudoexfoliation syndrome for the comprehensive ophthalmologist. Intraocular and systemic manifestations. Ophthalmology 1998; 105: 951-968
- 2 Ritch R, Schlotzer-Schrehardt U. Exfoliation syndrome. Surv Ophthalmol 2001; 45: 265-315
- 3 Schlotzer-Schrehardt U, Kuchle M, Junemann A et al. [Relevance of the pseudoexfoliation syndrome for the glaucomas]. Ophthalmologe 2002; 99: 683-690
- 4 Ritch R, Schlotzer-Schrehardt U. Exfoliation (pseudoexfoliation) syndrome: toward a new understanding. Proceedings of the First International Think Tank. Acta Ophthalmol Scand 2001; 79: 213-217
- 5 Shuba L, Nicolela MT, Rafuse PE. Correlation of capsular pseudoexfoliation material and iridocorneal angle pigment with the severity of pseudoexfoliation glaucoma. J Glaucoma 2007; 16: 94-97
- 6 Ritch R, Schlotzer-Schrehardt U, Konstas AG. Why is glaucoma associated with exfoliation syndrome?. Prog Retin Eye Res 2003; 22: 253-275
- 7 Hammer T, Schlotzer-Schrehardt U, Naumann GO. Unilateral or asymmetric pseudoexfoliation syndrome? An ultrastructural study. Arch Ophthalmol 2001; 119: 1023-1031
- 8 Ritch R. Exfoliation syndrome-the most common identifiable cause of open-angle glaucoma. J Glaucoma 1994; 3: 176-177
- 9 Zheng X, Shiraishi A, Okuma S et al. In vivo confocal microscopic evidence of keratopathy in patients with pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci 2011; 52: 1755-1761
- 10 Knorr HL, Junemann A, Handel A et al. [Morphometric and qualitative changes in corneal endothelium in pseudoexfoliation syndrome]. Fortschr Ophthalmol 1991; 88: 786-789
- 11 Ishikawa A. Risk factors for reduced corneal endothelial cell density before cataract surgery. J Cataract Refract Surg 2002; 28: 1982-1992
- 12 Seitz B, Muller EE, Langenbucher A et al. [Endothelial keratopathy in pseudoexfoliation syndrome: quantitative and qualitative morphometry using automated video image analysis]. Klin Monatsbl Augenheilkd 1995; 207: 167-175
- 13 Puska P, Vesti E, Tomita G et al. Optic disc changes in normotensive persons with unilateral exfoliation syndrome: a 3-year follow-up study. Graefes Arch Clin Exp Ophthalmol 1999; 237: 457-462
- 14 Stefaniotou M, Kalogeropoulos C, Razis N et al. The cornea in exfoliation syndrome. Doc Ophthalmol 1992; 80: 329-333
- 15 Wang L, Yamasita R, Hommura S. Corneal endothelial changes and aqueous flare intensity in pseudoexfoliation syndrome. Ophthalmologica 1999; 213: 387-391
- 16 Sheng H, Bullimore MA. Factors affecting corneal endothelial morphology. Cornea 2007; 26: 520-525
- 17 Snellingen T, Rao GN, Shrestha JK et al. Quantitative and morphological characteristics of the human corneal endothelium in relation to age, gender, and ethnicity in cataract populations of South Asia. Cornea 2001; 20: 55-58
- 18 Niederer RL, Perumal D, Sherwin T et al. Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study. Br J Ophthalmol 2007; 91: 1165-1169
- 19 Zarnowski T, Lekawa A, Dyduch A et al. [Corneal endothelial density in glaucoma patients]. Klin Oczna 2005; 107: 448-451
- 20 Sihota R, Lakshmaiah NC, Titiyal JS et al. Corneal endothelial status in the subtypes of primary angle closure glaucoma. Clin Experiment Ophthalmol 2003; 31: 492-495
- 21 Gagnon MM, Boisjoly HM, Brunette I et al. Corneal endothelial cell density in glaucoma. Cornea 1997; 16: 314-318
- 22 Bourne WM. Cellular changes in transplanted human corneas. Cornea 2001; 20: 560-569
- 23 Murata H, Kato S, Fukushima H et al. Corneal endothelial cell density reduction: a complication of retinal photocoagulation with an indirect ophthalmoscopy contact lens. Acta Ophthalmol Scand 2007; 85: 407-408
- 24 Inoue K, Kato S, Inoue Y et al. The corneal endothelium and thickness in type II diabetes mellitus. Jpn J Ophthalmol 2002; 46: 65-69
- 25 Wirbelauer C, Anders N, Pham DT et al. Corneal endothelial cell changes in pseudoexfoliation syndrome after cataract surgery. Arch Ophthalmol 1998; 116: 145-149
- 26 Inoue K, Okugawa K, Oshika T et al. Morphological study of corneal endothelium and corneal thickness in pseudoexfoliation syndrome. Jpn J Ophthalmol 2003; 47: 235-239
- 27 Konstas AG, Mantziris DA, Stewart WC. Diurnal intraocular pressure in untreated exfoliation and primary open-angle glaucoma. Arch Ophthalmol 1997; 115: 182-185
- 28 Yuksel N, Karabas VL, Demirci A et al. Comparison of blood flow velocities of the extraocular vessels in patients with pseudoexfoliation or primary open-angle glaucoma. Ophthalmologica 2001; 215: 424-429
- 29 Harju M, Vesti E. Blood flow of the optic nerve head and peripapillary retina in exfoliation syndrome with unilateral glaucoma or ocular hypertension. Graefes Arch Clin Exp Ophthalmol 2001; 239: 271-277
- 30 Helbig H, Schlotzer-Schrehardt U, Noske W et al. Anterior-chamber hypoxia and iris vasculopathy in pseudoexfoliation syndrome. Ger J Ophthalmol 1994; 3: 148-153
- 31 Schlotzer-Schrehardt U, Naumann GO. Ocular and systemic pseudoexfoliation syndrome. Am J Ophthalmol 2006; 141: 921-937
- 32 Menkhaus S, Motschmann M, Kuchenbecker J et al. [Pseudoexfoliation (PEX) syndrome and intraoperative complications in cataract surgery]. Klin Monatsbl Augenheilkd 2000; 216: 388-392
- 33 Rubowitz A, Assia EI, Rosner M et al. Antioxidant protection against corneal damage by free radicals during phacoemulsification. Invest Ophthalmol Vis Sci 2003; 44: 1866-1870
- 34 Lass JH, Khosrof SA, Laurence JK et al. A double-masked, randomized, 1-year study comparing the corneal effects of dorzolamide, timolol, and betaxolol. Dorzolamide Corneal Effects Study Group. Arch Ophthalmol 1998; 116: 1003-1010
- 35 Nesher R, Kass MA, Gans LA. Corneal endothelial changes in ocular hypertensive individuals after long-term unilateral treatment with timolol. Am J Ophthalmol 1990; 110: 309-310
- 36 Beneyto P, Perez TM. Effect of continued treatment with timolol maleate on corneal endothelium: a fluorophotometric study. Cornea 1998; 17: 600-603
- 37 Grub M, Leitritz M, Mielke J et al. [Effect of timolol on central corneal thickness and endothelial cell density]. Klin Monatsbl Augenheilkd 2006; 223: 894-898
- 38 Lass JH, Eriksson GL, Osterling L et al. Comparison of the corneal effects of latanoprost, fixed combination latanoprost-timolol, and timolol: A double-masked, randomized, one-year study. Ophthalmology 2001; 108: 264-271
- 39 Schlotzer-Schrehardt UM, Koca MR, Naumann GO et al. Pseudoexfoliation syndrome. Ocular manifestation of a systemic disorder?. Arch Ophthalmol 1992; 110: 1752-1756
- 40 Streeten BW, Li ZY, Wallace RN et al. Pseudoexfoliative fibrillopathy in visceral organs of a patient with pseudoexfoliation syndrome. Arch Ophthalmol 1992; 110: 1757-1762
- 41 Schumacher S, Schlotzer-Schrehardt U, Martus P et al. Pseudoexfoliation syndrome and aneurysms of the abdominal aorta. Lancet 2001; 357: 359-360
- 42 Flammer J, Pache M, Resink T. Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Prog Retin Eye Res 2001; 20: 319-349
- 43 Citirik M, Acaroglu G, Batman C et al. A possible link between the pseudoexfoliation syndrome and coronary artery disease. Eye 2007; 21: 11-15
- 44 Mitchell P, Wang JJ, Smith W. Association of pseudoexfoliation syndrome with increased vascular risk. Am J Ophthalmol 1997; 124: 685-687