RSS-Feed abonnieren
DOI: 10.1055/s-0033-1360336
Die Druckmessplattform als klinisch-diagnostisches Instrument zur Analyse der Fußstatik nach dem Foot Posture Index
Plantar Pressure Platform as Clinical Assesment Tool in the Analysis of Foot Posture with the Foot Posture IndexPublikationsverlauf
Publikationsdatum:
27. Februar 2014 (online)

Zusammenfassung
Hintergrund: Als Foot Posture Index wird eine statische Fußdruckmessung bezeichnet, die
das Ausmaß der neutralen, pronierten oder supinierten Haltung des Fußes bestimmt. Allerdings
gibt es nur wenig Informationen über den Zusammenhang zwischen der Fußform und dem Muster der
plantaren Druckverteilung. Dieser Zusammenhang wird im folgenden Beitrag
untersucht.
Patienten und Methode: 144 fußgesunde Probanden (101 Frauen und 43
Männer) mit einem Durchschnittsalter von 25,4 ± 6,3 Jahren wurden in die Studie eingeschlossen.
Zur Auswertung gelangten 221 normale, 39 pronierte und 28 supinierte Füße. Es erfolgte die
Bestimmung des Foot Posture Index (FPI) anhand einer Fußdruckmessung. Statische Variablen wie
Abstützfläche (cm²) des Fußes, der durchschnittliche Belastungsdruck (kPa) und die Druckspitzen
(kPa) wurden analysiert und mit den FPI-Werten korreliert.
Ergebnisse: Von den 288
analysierten Füßen korreliert Punkt 5 (Ausmaß der inneren Längswölbung) des FPI mit der
Vergrößerung der plantaren Abstützfläche (p = 0,038), wobei die Höhe der Fußlängswölbung
niedriger ist. Die nach dem FPI supinierten Füße stehen in Verbindung mit dem Maximaldruck mit
p = 0,029. Die Kontaktfläche des Fußes konnte mittels der Punktzahl des gesamten FPI sowie den
Punktzahlen des FPI 3, 5 und 6 (r2 = 0,059, p < 0,001) bestimmt
werden.
Schlussfolgerungen: Es existiert eine schwache statistisch
signifikante Verbindung zwischen der Fußform und dem FPI.
Abstract
Background: The foot posture index is a static measurement that splits up the foot posture
into neutral, pronatus and supinatus. However, the relation between the foot posture and the
plantar pressure standards is not well known. For this, the objective of this research is to
check the relationship between the foot posture and plantar pressure
standard.
Subjects and Material: 144 participants (101 women and 43 men), mean
age 25.4 ± 6.3 years, were measured for the FPI. The pedobarometric measurement was made with
the plantar pressure platform, we measured total surface (cm2), mean pressure (kPa)
and maximum pressure (kPa), these measurements were correlated with the FPI
measurements.
Results: 288 feet were analysed with regard to the correlation
between point 5 of FPI (medial arch height) and the plantar surface total area (p = 0.038):
lower arch height and supinated foot are related to the maximum pressure points with p = 0.029.
The total contact surface can be determined with the final score of the FPI, the scores of FPI
3, 5 and 6 FPI (r2 = 0.059, p < 0.001) with a 5.9 %
prediction.
Conclusion: The supinatus foot is correlated statistically
significantly through the maximum pressure and the plantar surface with the pronatus foot.
-
Literatur
- 1 Redmond AC, Crosbie J, Ouvrier RA. Development and validation of a novel rating system for scoring standing foot posture: the Foot Posture Index. Clin Biomech (Bristol, Avon) 2006; 21: 89-98
- 2 Keenan A, Redmond AC, Horton M et al. The Foot Posture Index: Rasch analysis of a novel, foot-specific outcome measure. Arch Phys Med Rehabil 2007; 88: 88-93
- 3 Jonely H, Brismee JM, Sizer jr. PS et al. Relationships between clinical measures of static foot posture and plantar pressure during static standing and walking. Clin Biomech (Bristol, Avon) 2011; 26: 873-879
- 4 Teyhen DS, Stoltenberg BE, Eckard TG et al. Static foot posture associated with dynamic plantar pressure parameters. J Orthop Sports Phys Ther 2011; 41: 100-107
- 5 Burns J, Crosbie J, Hunt A et al. The effect of pes cavus on foot pain and plantar pressure. Clin Biomech (Bristol, Avon) 2005; 20: 877-882
- 6 Albensi RJ, Nyland J, Caborn DN. The relationship of body weight and clinical foot and ankle measurements to the heel forces of forward and backward walking. J Athl Train 1999; 34: 328-333
- 7 Benhamú S, Fernández LM, Guerrero A et al. Influencia de la Laxitud Articular en la Biomecánica del Pie. Rev Esp Pod 2004; 15: 290-298
- 8 Redmond AC, Crane YZ, Menz HB. Normative values for the Foot Posture Index. J Foot Ankle Res 2008; 1: 6
- 9 Sackett DL, Rosenberg WM, Muir JA et al. Evidence-Based Medicine: what it is and what it isnʼt. BMJ 1996; 312: 71-72
- 10 Mickle KJ, Munro BJ, Lord SR et al. Cross-sectional analysis of foot function, functional ability, and health-related quality of life in older people with disabling foot pain. Arthritis Care Res (Hoboken) 2011; 63: 1592-1598
- 11 Graham RB, Costigan PA, Sadler EM et al. Local dynamic stability of the lifting kinematic chain. Gait Posture 2011; 34: 561-563
- 12 Ellis SJ, Stoecklein H, Yu JC et al. The accuracy of an automasking algorithm in plantar pressure measurements. HSS J 2011; 7: 57-63
- 13 Menz HB. Alternative techniques for the clinical assessment of foot pronation. J Am Podiatr Med Assoc 1998; 88: 119-129
- 14 Irving DB, Cook JL, Young MA et al. Obesity and pronated foot type may increase the risk of chronic plantar heel pain: a matched case-control study. BMC Musculoskelet Disord 2007; 8: 41
- 15 Evans AM, Rome K. A review of the evidence for non-surgical interventions for flexible pediatric flat feet. Eur J Phys Rehabil Med 2011; 47: 69-89
- 16 Evans AM, Rome K, Peet L. The foot posture index, ankle lunge test, Beighton scale and the lower limb assessment score in healthy children: a reliability study. J Foot Ankle Res 2012; 5: 1
- 17 Rao S, Song J, Kraszewski A et al. The effect of foot structure on 1st metatarsophalangeal joint flexibility and hallucal loading. Gait Posture 2011; 34: 131-137
- 18 Nielsen RG, Rathleff MS, Simonsen OH et al. Determination of normal values for navicular drop during walking: a new model correcting for foot length and gender. J Foot Ankle Res 2009; 2: 12
- 19 Kura H, Kitaoka HB, Luo ZP et al. Measurement of surface contact area of the ankle joint. Clin Biomech (Bristol, Avon) 1998; 13: 365-370
- 20 Nawata K, Nishihara S, Hayashi I et al. Plantar pressure distribution during gait in athletes with functional instability of the ankle joint: preliminary report. J Orthop Sci 2005; 10: 298-301
- 21 Tsai LC, Yu B, Mercer VS et al. Comparison of different structural foot types for measures of standing postural control. J Orthop Sports Phys Ther 2006; 36: 942-953
- 22 Chuter VH. Relationships between foot type and dynamic rearfoot frontal plane motion. J Foot Ankle Res 2010; 3: 9
- 23 Murphy DF, Beynnon BD, Michelson JD et al. Efficacy of plantar loading parameters during gait in terms of reliability, variability, effect of gender and relationship between contact area and plantar pressure. Foot Ankle Int 2005; 2: 171-179
- 24 Sánchez-Rodríguez R, Martínez-Nova A, Escamilla-Martínez E et al. Can the Foot Posture Index or their individual criteria predict dynamic plantar pressures?. Gait Posture 2012; 36: 591-595