Semin Respir Crit Care Med 2014; 35(01): 017-026
DOI: 10.1055/s-0033-1363448
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Chest Tomosynthesis: Technical and Clinical Perspectives

Ase Allansdotter Johnsson
1   Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
2   Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
,
Jenny Vikgren
1   Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
2   Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
,
Magnus Bath
3   Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
4   Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
› Author Affiliations
Further Information

Publication History

Publication Date:
30 January 2014 (online)

Abstract

The recent implementation of chest tomosynthesis is built on the availability of large, dose-efficient, high-resolution flat panel detectors, which enable the acquisition of the necessary number of projection radiographs to allow reconstruction of section images of the chest within one breath hold. A chest tomosynthesis examination obtains the increased diagnostic information provided by volumetric imaging at a radiation dose comparable to that of conventional chest radiography. There is evidence that the sensitivity of chest tomosynthesis may be at least three times higher than for conventional chest radiography for detection of pulmonary nodules. The sensitivity increases with increasing nodule size and attenuation and decreases for nodules with subpleural location. Differentiation between pleural and subpleural lesions is a known pitfall due to the limited depth resolution in chest tomosynthesis. Studies on different types of pathology report increased detectability in favor of chest tomosynthesis in comparison to chest radiography. The technique provides improved diagnostic accuracy and confidence in the diagnosis of suspected pulmonary lesions on chest radiography and facilitates the exclusion of pulmonary lesions in a majority of patients, avoiding the need for computed tomography (CT). However, motion artifacts can be a cumbersome limitation and breathing during the tomosynthesis image acquisition may result in severe artifacts significantly affecting the detectability of pathology. In summary, chest tomosynthesis has been shown to be superior to chest conventional radiography for many tasks and to be able to replace CT in selected cases. In our experience chest tomosynthesis is an efficient problem solver in daily clinical work.

 
  • References

  • 1 Dobbins III JT, Godfrey DJ. Digital x-ray tomosynthesis: current state of the art and clinical potential. Phys Med Biol 2003; 48 (19) R65-R106
  • 2 Dobbins III JT, McAdams HP, Godfrey DJ, Li CM. Digital tomosynthesis of the chest. J Thorac Imaging 2008; 23 (2) 86-92
  • 3 Dobbins III JT, McAdams HP. Chest tomosynthesis: technical principles and clinical update. Eur J Radiol 2009; 72 (2) 244-251
  • 4 Dobbins III JT. Tomosynthesis imaging: at a translational crossroads. Med Phys 2009; 36 (6) 1956-1967
  • 5 James TD, McAdams HP, Song JW , et al. Digital tomosynthesis of the chest for lung nodule detection: interim sensitivity results from an ongoing NIH-sponsored trial. Med Phys 2008; 35 (6) 2554-2557
  • 6 Vikgren J, Zachrisson S, Svalkvist A , et al. Comparison of chest tomosynthesis and chest radiography for detection of pulmonary nodules: human observer study of clinical cases. Radiology 2008; 249 (3) 1034-1041
  • 7 Sabol JM. A Monte Carlo estimation of effective dose in chest tomosynthesis. Med Phys 2009; 36 (12) 5480-5487
  • 8 Båth M, Svalkvist A, von Wrangel A, Rismyhr-Olsson H, Cederblad Å. Effective dose to patients from chest examinations with tomosynthesis. Radiat Prot Dosimetry 2010; 139 (1-3) 153-158
  • 9 Yamada Y, Jinzaki M, Hasegawa I , et al. Fast scanning tomosynthesis for the detection of pulmonary nodules: diagnostic performance compared with chest radiography, using multidetector-row computed tomography as the reference. Invest Radiol 2011; 46 (8) 471-477
  • 10 Vult von Steyern K, Björkman-Burtscher I, Geijer M. Tomosynthesis in pulmonary cystic fibrosis with comparison to radiography and computed tomography: a pictorial review. Insights Imaging 2012; 3 (1) 81-89
  • 11 Tingberg A. X-ray tomosynthesis: a review of its use for breast and chest imaging. Radiat Prot Dosimetry 2010; 139 (1-3) 100-107
  • 12 Quaia E, Baratella E, Cernic S , et al. Analysis of the impact of digital tomosynthesis on the radiological investigation of patients with suspected pulmonary lesions on chest radiography. Eur Radiol 2012; 22 (9) 1912-1922
  • 13 Geitung JT, Skjaerstad LM, Göthlin JH. Clinical utility of chest roentgenograms. Eur Radiol 1999; 9 (4) 721-723
  • 14 Speets AM, van der Graaf Y, Hoes AW , et al. Chest radiography in general practice: indications, diagnostic yield and consequences for patient management. Br J Gen Pract 2006; 56 (529) 574-578
  • 15 Samei E, Flynn MJ, Eyler WR. Detection of subtle lung nodules: relative influence of quantum and anatomic noise on chest radiographs. Radiology 1999; 213 (3) 727-734
  • 16 Båth M, Håkansson M, Börjesson S , et al. Nodule detection in digital chest radiography: introduction to the RADIUS chest trial. Radiat Prot Dosimetry 2005; 114 (1-3) 85-91
  • 17 Håkansson M, Båth M, Börjesson S , et al. Nodule detection in digital chest radiography: effect of nodule location. Radiat Prot Dosimetry 2005; 114 (1-3) 92-96
  • 18 Håkansson M, Båth M, Börjesson S, Kheddache S, Johnsson AA, Månsson LG. Nodule detection in digital chest radiography: effect of system noise. Radiat Prot Dosimetry 2005; 114 (1-3) 97-101
  • 19 Båth M, Håkansson M, Börjesson S , et al. Nodule detection in digital chest radiography: part of image background acting as pure noise. Radiat Prot Dosimetry 2005; 114 (1-3) 102-108
  • 20 Båth M, Håkansson M, Börjesson S , et al. Nodule detection in digital chest radiography: effect of anatomical noise. Radiat Prot Dosimetry 2005; 114 (1-3) 109-113
  • 21 Håkansson M, Båth M, Börjesson S , et al. Nodule detection in digital chest radiography: summary of the RADIUS chest trial. Radiat Prot Dosimetry 2005; 114 (1-3) 114-120
  • 22 Kaneko M, Eguchi K, Ohmatsu H , et al. Peripheral lung cancer: screening and detection with low-dose spiral CT versus radiography. Radiology 1996; 201 (3) 798-802
  • 23 Schueller G, Matzek W, Kalhs P, Schaefer-Prokop C. Pulmonary infections in the late period after allogeneic bone marrow transplantation: chest radiography versus computed tomography. Eur J Radiol 2005; 53 (3) 489-494
  • 24 Blanchon T, Bréchot JM, Grenier PA , et al; Dépiscan Group. Baseline results of the Depiscan study: a French randomized pilot trial of lung cancer screening comparing low dose CT scan (LDCT) and chest X-ray (CXR). Lung Cancer 2007; 58 (1) 50-58
  • 25 Elmali M, Baydin A, Nural MS, Arslan B, Ceyhan M, Gürmen N. Lung parenchymal injury and its frequency in blunt thoracic trauma: the diagnostic value of chest radiography and thoracic CT. Diagn Interv Radiol 2007; 13 (4) 179-182
  • 26 Graffelman AW, Willemssen FE, Zonderland HM, Neven AK, Kroes AC, van den Broek PJ. Limited value of chest radiography in predicting aetiology of lower respiratory tract infection in general practice. Br J Gen Pract 2008; 58 (547) 93-97
  • 27 Brown RE, Stromberg AJ, Hagendoorn LJ , et al. Surveillance after surgical treatment of melanoma: futility of routine chest radiography. Surgery 2010; 148 (4) 711-716 , discussion 716–717
  • 28 Mayo JR, Aldrich J, Muller NL ; Fleischner Society. Radiation exposure at chest CT: a statement of the Fleischner Society. Radiology 2003; 228 (1) 15-21
  • 29 Renton J, Kincaid S, Ehrlich PF. Should helical CT scanning of the thoracic cavity replace the conventional chest x-ray as a primary assessment tool in pediatric trauma? An efficacy and cost analysis. J Pediatr Surg 2003; 38 (5) 793-797
  • 30 Payne JT. CT radiation dose and image quality. Radiol Clin North Am 2005; 43 (6) 953-962 , vii
  • 31 Wu T, Moore RH, Rafferty EA, Kopans DB. A comparison of reconstruction algorithms for breast tomosynthesis. Med Phys 2004; 31 (9) 2636-2647
  • 32 Chen Y, Lo JY, Baker JA, Dobbins III JT. Gaussian frequency blending algorithm with matrix inversion tomosynthesis (MITS) and filtered back projection (FBP) for better digital breast tomosynthesis reconstruction. Proc SPIE 2006; 61420 E1-61420 E9
  • 33 Godfrey DJ, McAdams HP, Dobbins III JT. Optimization of the matrix inversion tomosynthesis (MITS) impulse response and modulation transfer function characteristics for chest imaging. Med Phys 2006; 33 (3) 655-667
  • 34 Rakowski JT, Dennis MJ. A comparison of reconstruction algorithms for C-arm mammography tomosynthesis. Med Phys 2006; 33 (8) 3018-3032
  • 35 Zhang Y, Chan HP, Sahiner B , et al. A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis. Med Phys 2006; 33 (10) 3781-3795
  • 36 Godfrey DJ, McAdams HP, Dobbins III JT. Stochastic noise characteristics in matrix inversion tomosynthesis (MITS). Med Phys 2009; 36 (5) 1521-1532
  • 37 Godfrey DJ, McAdams HP, Dobbins III JT. The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis. Med Phys 2013; 40 (2) 021907
  • 38 Asplund S, Johnsson ÅA, Vikgren J , et al. Learning aspects and potential pitfalls regarding detection of pulmonary nodules in chest tomosynthesis and proposed related quality criteria. Acta Radiol 2011; 52 (5) 503-512
  • 39 Terzi A, Bertolaccini L, Viti A , et al; SOS Study Group. Lung cancer detection with digital chest tomosynthesis: baseline results from the observational study SOS. J Thorac Oncol 2013; 8 (6) 685-692
  • 40 Gomi T, Nakajima M, Fujiwara H , et al. Comparison between chest digital tomosynthesis and CT . as a screening method to detect artificial pulmonary nodules for screening: a phantom study. Br J Radiol 2012; 85: e622-e629
  • 41 Machida H, Yuhara T, Mori T, Ueno E, Moribe Y, Sabol JM. Optimizing parameters for flat-panel detector digital tomosynthesis. Radiographics 2010; 30 (2) 549-562
  • 42 Yamada Y, Jinzaki M, Hashimoto M , et al. Tomosynthesis for the early detection of pulmonary emphysema: diagnostic performance compared with chest radiography, using multidetector computed tomography as reference. Eur Radiol 2013; 23 (8) 2118-2126
  • 43 Mettler Jr FA, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 2008; 248 (1) 254-263
  • 44 Svalkvist A, Båth M. Simulation of dose reduction in tomosynthesis. Med Phys 2010; 37 (1) 258-269
  • 45 Hwang HS, Chung MJ, Lee KS. Digital tomosynthesis of the chest: comparison of patient exposure dose and image quality between standard default setting and low dose setting. Korean J Radiol 2013; 14 (3) 525-531
  • 46 Lucaya J, Piqueras J, García-Peña P, Enríquez G, García-Macías M, Sotil J. Low-dose high-resolution CT of the chest in children and young adults: dose, cooperation, artifact incidence, and image quality. AJR Am J Roentgenol 2000; 175 (4) 985-992
  • 47 McCollough CH, Bruesewitz MR, Kofler Jr JM. CT dose reduction and dose management tools: overview of available options. Radiographics 2006; 26 (2) 503-512
  • 48 Katsura M, Matsuda I, Akahane M , et al. Model-based iterative reconstruction technique for ultralow-dose chest CT: comparison of pulmonary nodule detectability with the adaptive statistical iterative reconstruction technique. Invest Radiol 2013; 48 (4) 206-212
  • 49 Svalkvist A, Månsson LG, Båth M. Monte Carlo simulations of the dosimetry of chest tomosynthesis. Radiat Prot Dosimetry 2010; 139 (1–3): 144-152
  • 50 Johnsson ÅA, Vikgren J, Svalkvist A , et al. Overview of two years of clinical experience of chest tomosynthesis at Sahlgrenska University Hospital. Radiat Prot Dosimetry 2010; 139 (1-3) 124-129
  • 51 Jung HN, Chung MJ, Koo JH, Kim HC, Lee KS. Digital tomosynthesis of the chest: utility for detection of lung metastasis in patients with colorectal cancer. Clin Radiol 2012; 67 (3) 232-238
  • 52 Kim EY, Chung MJ, Lee HY, Koh W-J, Jung HN, Lee KS. Pulmonary mycobacterial disease: diagnostic performance of low-dose digital tomosynthesis as compared with chest radiography. Radiology 2010; 257 (1) 269-277
  • 53 Lee G, Jeong YJ, Kim KI , et al. Comparison of chest digital tomosynthesis and chest radiography for detection of asbestos-related pleuropulmonary disease. Clin Radiol 2013; 68 (4) 376-382
  • 54 Price D, Freeman D, Cleland J, Kaplan A, Cerasoli F. Earlier diagnosis and earlier treatment of COPD in primary care. Prim Care Respir J 2011; 20 (1) 15-22
  • 55 Godoy MC, Naidich DP. Overview and strategic management of subsolid pulmonary nodules. J Thorac Imaging 2012; 27 (4) 240-248
  • 56 de Hoop B, van Ginneken B, Gietema H, Prokop M. Pulmonary perifissural nodules on CT scans: rapid growth is not a predictor of malignancy. Radiology 2012; 265 (2) 611-616
  • 57 Rystedt H, Ivarsson J, Asplund S, Johnsson AA, Båth M. Rediscovering radiology: new technologies and remedial action at the worksite. Soc Stud Sci 2011; 41 (6) 867-891
  • 58 Johnsson ÅA, Svalkvist A, Vikgren J , et al. A phantom study of nodule size evaluation with chest tomosynthesis and computed tomography. Radiat Prot Dosimetry 2010; 139 (1-3) 140-143
  • 59 Johnsson ÅA, Fagman E, Vikgren J , et al. Pulmonary nodule size evaluation with chest tomosynthesis. Radiology 2012; 265 (1) 273-282
  • 60 Vikgren J, Johnsson ÅA, Båth M. Incidentally detected pulmonary nodules in a population study; a comparative study of nodule follow-up with chest tomosynthesis and computed tomography [abstract]. Preseented at: Third World Congress of Thoracic Imaging; June 8–11, 2013, Seoul, Korea
  • 61 Yankaskas JR, Marshall BC, Sufian B, Simon RH, Rodman D. Cystic fibrosis adult care: consensus conference report. Chest 2004; 125 (1, Suppl) 1S-39S
  • 62 Santamaria F, Grillo G, Guidi G , et al. Cystic fibrosis: when should high-resolution computed tomography of the chest Be obtained?. Pediatrics 1998; 101 (5) 908-913
  • 63 Demirkazik FB, Ariyürek OM, Ozçelik U, Göçmen A, Hassanabad HK, Kiper N. High resolution CT in children with cystic fibrosis: correlation with pulmonary functions and radiographic scores. Eur J Radiol 2001; 37 (1) 54-59
  • 64 Nasr SZ, Kuhns LR, Brown RW, Hurwitz ME, Sanders GM, Strouse PJ. Use of computerized tomography and chest x-rays in evaluating efficacy of aerosolized recombinant human DNase in cystic fibrosis patients younger than age 5 years: a preliminary study. Pediatr Pulmonol 2001; 31 (5) 377-382
  • 65 Cademartiri F, Luccichenti G, Palumbo AA , et al. Predictive value of chest CT in patients with cystic fibrosis: a single-center 10-year experience. AJR Am J Roentgenol 2008; 190 (6) 1475-1480
  • 66 Robinson TE. Imaging of the chest in cystic fibrosis. Clin Chest Med 2007; 28 (2) 405-421
  • 67 Vult von Steyern K, Björkman-Burtscher IM, Höglund P, Bozovic G, Wiklund M, Geijer M. Description and validation of a scoring system for tomosynthesis in pulmonary cystic fibrosis. Eur Radiol 2012; 22 (12) 2718-2728
  • 68 Linnane B, Robinson P, Ranganathan S, Stick S, Murray C. Role of high-resolution computed tomography in the detection of early cystic fibrosis lung disease. Paediatr Respir Rev 2008; 9 (3) 168-174 , quiz 174–175
  • 69 O'Connell OJ, McWilliams S, McGarrigle A , et al. Radiologic imaging in cystic fibrosis: cumulative effective dose and changing trends over 2 decades. Chest 2012; 141 (6) 1575-1583
  • 70 Söderman C, Johnsson Å, Vikgren J. Application of a computed tomography based cystic fibrosis scoring system to chest tomosynthesis. Proc SPIE 2013; 8673: 8673141-867314.8
  • 71 Quaia E, Baratella E, Cioffi V , et al. The value of digital tomosynthesis in the diagnosis of suspected pulmonary lesions on chest radiography: analysis of diagnostic accuracy and confidence. Acad Radiol 2010; 17 (10) 1267-1274
  • 72 Quaia E, Baratella E, Poillucci G, Kus S, Cioffi V, Cova MA. Digital tomosynthesis as a problem-solving imaging technique to confirm or exclude potential thoracic lesions based on chest X-ray radiography. Acad Radiol 2013; 20 (5) 546-553
  • 73 Zachrisson S, Vikgren J, Svalkvist A , et al. Effect of clinical experience of chest tomosynthesis on detection of pulmonary nodules. Acta Radiol 2009; 50 (8) 884-891
  • 74 Kim SM, Chung MJ, Lee KS , et al. Digital tomosynthesis of the thorax: the influence of respiratory motion artifacts on lung nodule detection. Acta Radiol 2013; 54 (6) 634-639