Neonatologie Scan 2014; 03(02): 151-167
DOI: 10.1055/s-0034-1365420
Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Spina bifida aperta: Diagnostik und minimalinvasive pränatale Therapie

Thomas Kohl
,
Anastasiia Khaleeva
Further Information

Publication History

Publication Date:
19 May 2014 (online)

Einleitung

Die Spina bifida aperta (SBA), auch „offener Rücken“ genannt, ist die häufigste mit dem Leben vereinbare Neuralrohrfehlbildung des Menschen. Meistens liegt die SBA als Myelomeningozele vor, eine Protrusion der Hirnhäute und des Rückenmarks durch unvollständig angelegte und somit ungeschlossene Wirbelbögen [1]. Hierbei liegen Teile des Rückenmarks frei an der Körperoberfläche (Abb. [1]). Eine SBA kann isoliert oder in Kombination mit anderen Fehlbildungen auftreten und führt in den meisten Fällen zur ausgeprägten körperlichen Behinderung und erheblichen Einschränkung der Lebensqualität [2]. In der Literatur wird die Inzidenz der SBA mit 3,4 pro 10 000 Lebendgeburten angegeben [3].

 
  • Literatur

  • 1 Adzick NS. Fetal myelomeningocele: natural history, pathophysiology, and in-utero intervention. Semin Fetal Neonatal Med 2010; 15: 9-14
  • 2 Parker SE, Yazdy MM, Mitchell AA et al. A description of spina bifida cases and co-occurring malformations, 1976–2011. Am J Med Genet A 2014; 164: 432-440
  • 3 Boulet SL, Yang Q, Mai C et al. Trends in the postfortification prevalence of spina bifida and anencephaly in the United States. Birth Defects Res A Clin Mol Teratol 2008; 82: 527-532
  • 4 Trudell AS, Odibo AO. Diagnosis of spina bifida on ultrasound: Always termination?. Best Pract Res Clin Obstet Gynaecol 2013; 12: 1521-6934
  • 5 Williams LJ, Mai CT, Edmonds LD et al. Prevalence of spina bifida and anencephaly during the transition to mandatory folic acid fortification in the United States. Teratology 2002; 66: 33-39
  • 6 MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the medical research council vitamin study. Lancet 1991; 338: 131-137
  • 7 Agopian AJ, Tinker SC, Lupo PJ et al. Proportion of neural tube defects attributable to known risk factors. Birth Defects Res A Clin Mol Teratol 2013; 97: 42-46
  • 8 Werler MM, Ahrens KA, Bosco JL et al. A Use of antiepileptic medications in pregnancy in relation to risks of birth defects. Ann Epidemiol 2011; 21: 842-850
  • 9 Hernández-Díaz S, Werler MM, Walker AM et al. Neural tube defects in relation to use of folic acid antagonists during pregnancy. Am J Epidemiol 2001; 153: 961-968
  • 10 Babcook CJ, Goldstein RB, Filly RA. Prenatally detected fetal myelomeningocele: is karyotype analysis warranted?. Radiology 1995; 194: 491-494
  • 11 Sunden B. On the diagnostic value of ultrasound in obstetrics and gynaecology. Acta Obstet Gynecol Scand 1964; 43: 1-191
  • 12 Sohn C, Holzgreve W. Ultraschall in Gynäkologie und Geburtshilfe. In: Scharf A. Skelett- und Muskelsystem. Stuttgart: Thieme; 2013: 264-317
  • 13 Thomas M. The lemon sign. Radiology 2003; 228: 206-207
  • 14 D'Addario V, Rossi AC, Pinto V et al. Comparison of six sonographic signs in the prenatal diagnosis of spina bifida. J Perinat Med 2008; 36: 330-334
  • 15 Nicolaides KH, Campbell S, Gabbe SG et al. Ultrasound screening for spina bifida: cranial and cerebral signs. Lancet 1986; 2: 72-74
  • 16 McLone DG, Dias MS. The Chiari II malformation: cause and impact. Childs Nerv Syst 2003; 19: 540-550
  • 17 Bernard JP, Cuckle HS, Stirnemann JJ et al. Screening for fetal spina bifida by ultrasound examination in the first trimester of pregnancy using fetal biparietal diameter. Am J Obstet Gynecol 2012; 207: 306.e1-5
  • 18 Chaoui R, Benoit B, Mitkowska-Wozniak H et al. Assessment of intracranial translucency (IT) in the detection of spina bifida at the 11-13-week scan. Ultrasound Obstet Gynecol 2009; 34: 249-252
  • 19 Chaoui R, Nicolaides KH. From nuchal translucency to intracranial translucency: towards the early detection of spina bifida. Ultrasound Obstet Gynecol 2010; 35: 133-138
  • 20 Buyukkurt S, Binokay F, Seydaoglu G et al. Prenatal determination of the upper lesion level of spina bifida with three-dimensional ultrasound. Fetal Diagn Ther 2013; 33: 36-40
  • 21 Mangels KJ, Tulipan N, Tsao LY et al. Fetal MRI in the evaluation of intrauterine myelomeningocele. Pediatr Neurosurg 2000; 32: 124-131
  • 22 Bernard JP, Cuckle HS, Bernard MA et al. Combined screening for open spina bifida at 11-13 weeks using fetal biparietal diameter and maternal serum markers. Am J Obstet Gynecol 2013; 209: 223.e1-5
  • 23 Mazur JM, Shurtleff D, Menelaus M et al. Orthopaedic management of high-level spina bifida. Early walking compared with early use of a wheelchair. J Bone Joint Surg Am 1989; 71: 56-61
  • 24 Stein R, Schröder A, Beetz R et al. Urologische Erkrankungen bei Patienten mit Meningomyelozele. Diagnostik und Management. Urologe A 2007; 46: 1620-1642
  • 25 Werhagen L, Gabrielsson H, Westgren N et al. Medical complication in adults with spina bifida. Clin Neurol Neurosurg 2013; 115: 1226-1229
  • 26 Kryger JV, González R, Barthold JS. Surgical management of urinary incontinence in children with neurogenic sphincteric incompetence. J Urol 2000; 163: 256-263
  • 27 Lemelle JL, Guillemin F, Aubert D et al. A multicenter evaluation of urinary incontinence management and outcome in spina bifida. J Urol 2006; 175: 208-212
  • 28 Messing-Jünger M, Röhrig A. Primary and secondary management of the Chiari II malformation in children with myelomeningocele. Childs Nerv Syst 2013; 29: 1553-1562
  • 29 Aschoff A, Kremer P, Hashemi B et al. The scientific history of hydrocephalus and its treatment. Neurosurg Rev 1999; 22: 67-93
  • 30 Messing-Jünger M, Röhrig A. Primary and secondary management of the Chiari II malformation in children with myelomeningocele. Childs Nerv Syst 2013; 29: 1553-1562
  • 31 Swaroop VT, Dias L. Orthopedic management of spina bifida. Part I: hip, knee, and rotational deformities. J Child Orthop 2009; 3: 441-449
  • 32 Özek MM, Cinalli G, Maixner WJ. Spina bifida Management and Outcome. In: Özek MM, Erol B, Tama IJ. Management of Vertebral Problems and Deformities. Milan: Springer; 2008: 305-318
  • 33 Özek MM, Cinalli G, Maixner WJ. Spina bifida Management and Outcome. In: Bowman RM, McLone DG. Tethered Cord in Children with Spina Bifida. Milan: Springer; 2008: 267-274
  • 34 Meuli M, Meuli-Simmen C, Hutchins GM et al. The spinal cord lesion in human fetuses with myelomeningocele: implications for fetal surgery. Pediatr Surg 1997; 32: 448-452
  • 35 McLone DG, Knepper PA. The cause of Chiari II malformation: a unified theory. Pediatr Neurosci 1989; 15: 1-12
  • 36 Encinas JL, García-Cabezas MÁ, Barkovich J et al. Maldevelopment of the cerebral cortex in the surgically induced model of myelomeningocele: implications for fetal neurosurgery. J Pediatr Surg 2011; 46: 713-722
  • 37 Adzick NS, Thom EA, Spong CY et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 2011; 364: 993-1004
  • 38 Heffez DS, Aryanpur J, Hutchins GM et al. The paralysis associated with myelomeningocele: clinical and experimental data implicating a preventable spinal cord injury. Neurosurgery 1990; 26: 987-992
  • 39 Selauki M, Manning S, Bernfield M. The curly tail mouse model of human neural tube defects demonstrates normal spinal cord differentiation at the level of the myelomeningocele: implications for fetal surgery. Child’s Nerv System 2001; 17: 19-23
  • 40 Kohl T. Stool contamination. J Neurosurg Pediatr 2010; 5: 422
  • 41 Meuli M, Meuli-Simmen C, Yingling CD et al. Creation of myelomeningocele in utero: A model of functional damage from spinal cord exposure in fetal sheep. J Pediatr Surg 1995; 30: 1028-1033
  • 42 Correia-Pinto J, Reis JL, Hutchins GM et al. In utero meconium exposure increases spinal cord necrosis in a rat model of myelomeningocele. J Pediatr Surg 2002; 37: 488-492
  • 43 Drewek MJ, Bruner JP, Whetsell WO et al. Quantitative analysis of the toxicity of human amniotic fluid to cultured rat spinal cord. Pediatr Neurosurg 1997; 27: 190-193
  • 44 Danzer E, Zhang L, Radu A et al. Amniotic fluid levels of glial fibrillary acidic protein in fetal rats with retinoic acid induced myelomeningocele: a potential marker for spinal cord injury. Am J Obstet Gynecol 2011; 204: 178.e1-11
  • 45 Meuli M, Meuli-Simmen C, Yingling CD et al. In utero repair of experimental myelomeningocele saves neurological function at birth. J Pediatr Surg 1996; 31: 397-402
  • 46 Korenromp MJ, Van Gool JD, Bruinese HW et al. Early fetal leg movements in myelomeningocele. Lancet 1986; 1: 917-918
  • 47 Sival DA, Begeer JH, Staal-Schreinemachers AL et al. Perinatal motor behaviour and neurological outcome in spina bifida aperta. Early Hum Dev 1997; 50: 27-37
  • 48 Warsof SL, Abramowicz JS, Sayegh SK et al. Lower limb movements and urologic function in fetuses with neural tube and other central nervous system defects. Fetal Ther 1988; 3: 129-134
  • 49 Adzick NS, Sutton LN, Crombleholme TM et al. Successful fetal surgery for spina bifida. Lancet 1998; 352: 1675-1676
  • 50 Adzick NS. Fetal Surgery for Myelomeningocele: Trials and Tribulations. J Pediatr Surg 2012; 47: 273-281
  • 51 Kohl T, Tchatcheva K, Weinbach J et al. Partial amniotic carbon dioxide insufflation (PACI) during minimally invasive fetoscopic surgery: early clinical experience in humans. Surg Endosc 2010; 24: 432-444
  • 52 Herrera SR, Leme RJ, Valente PR et al. Comparison between two surgical techniques for prenatal correction of meningomyelocele in sheep. Einstein (Sao Paulo) 2012; 10: 455-461
  • 53 Tulipan N, Hernanz-Schulman M, Lowe LH et al. Intrauterine myelomeningocele repair reverses preexisting hindbrain herniation. Pediatr Neurosurg 1999; 31: 137-142
  • 54 Verbeek RJ, Heep A, Maurits NM et al. Fetal endoscopic myelomeningocele closure preserves segmental neurological function. Developmental Medicine & Child Neurology 2012; 54: 15-22
  • 55 Shurtleff D. Fetal endoscopic myelomeningocele repair. Dev Med Child Neurol 2012; 54: 4-5
  • 56 Kohl T. Supporting the Achilles Heel of Fetal Surgery – Ultrasound-guided placement of Membranous-Defect-Coverage-Devices (MDCD) during minimally-invasive fetoscopic surgery for spina bifida is associated with prolonged gestation and a lower rate of chorioamnionitis. Ultraschall in Med 2013; 34: WS_SL22_08
  • 57 Degenhardt J, Schürg R, Winarno A et al. Percutaneous minimally-invasive fetoscopic surgery für spina bifida aperta – Part II Maternal management and outcome. Ultrasound Obstet Gynecol 2014; 21 Epub ahead of print
  • 58 Kohl T. Minimally invasive fetoscopic interventions: an overview in 2010. Surg Endosc 2010; 24: 2056-2067
  • 59 Degenhardt J, Khaleeva A, Encensberger C et al. Pre-operative assessment of ventricular size and ventricle-to-hemisphere area ratio permits estimation of the need for ventriculo-peritoneal shunt insertion during the first three months of postnatal life in fetuses before fetoscopic surgery for spina bifida aperta. Ultraschall in Med 2013; 34: PS6_02
  • 60 Dey F, Neubauer B, Kohl T et al. Serial assessment of lower extremity motor function over the first 12 months of life in infants that underwent minimally-invasive fetoscopic surgery for spina bifida aperta at the University Hospital of Giessen-Marburg 2010 – 2013. Ultraschall in Med 2013; 34: WS_SL22_07
  • 61 Lee NG, Gomez P, Uberoi V et al. In utero closure of myelomeningocele does not improve lower urinary tract function. J Urol 2012; 188: 1567-1571
  • 62 Clayton DB, Tanaka ST, Trusler L et al. Long-term urological impact of fetal myelomeningocele closure. J Urol 2011; 186: 1581-1585
  • 63 Koh CJ, DeFilippo RE, Borer JG et al. Bladder and external urethral sphincter function after prenatal closure of myelomeningocele. J Urol 2006; 176: 2232-2236