Z Gastroenterol 2014; 52(4): 360-366
DOI: 10.1055/s-0034-1366002
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

nab-Paclitaxel: Novel Clinical and Experimental Evidence in Pancreatic Cancer

nab-Paclitaxel: Neue klinische und grundlagenwissenschaftliche Erkenntnisse im Pankreaskarzinom
A. Neesse
1   Department of Gastroenterology, Endocrinology, Infectiology and Metabolism, Philipps University Marburg, Marburg, Germany
,
P. Michl
1   Department of Gastroenterology, Endocrinology, Infectiology and Metabolism, Philipps University Marburg, Marburg, Germany
,
D. A. Tuveson
2   Cold Spring Harbor, Laboratory Cold Spring Harbor, NY, USA
,
V. Ellenrieder
1   Department of Gastroenterology, Endocrinology, Infectiology and Metabolism, Philipps University Marburg, Marburg, Germany
› Author Affiliations
Further Information

Publication History

21 October 2013

13 January 2014

Publication Date:
31 March 2014 (online)

Abstract

The past few decades have seen virtually no treatment advances for patients with metastatic pancreatic cancer. Clinical hallmark features of pancreatic ductal adenocarcinoma (PDA) include late symptom onset, invasive growth, early liver and lymph node metastasis, and resistance to available chemotherapies. nab-Paclitaxel (Abraxane®) is generated through high-pressure homogenization of human albumin and conventional paclitaxel resulting in non-covalently bound, water-soluble albumin-paclitaxel particles with an approximate diameter of 130 nm. Results from the recently completed Metastatic Pancreatic Adenocarcinoma Trial (MPACT) (phase III trial) showed a significant survival benefit for patients treated with nab-paclitaxel in combination with gemcitabine, and this treatment regimen is currently being implemented in national and international guidelines for PDA patients. Therefore, this regimen provides a much needed vantage point of attack for this recalcitrant tumor offering potential new hope for our patients. Mechanisms such as stromal depletion, selective intratumoral accumulation, synergism with gemcitabine metabolism and secreted protein acidic and rich in cysteine (SPARC) mediated anti-tumor activity have been suggested for nab-paclitaxel. This review discusses the clinical and experimental advances of nab-paclitaxel in pancreatic cancer.

Zusammenfassung

In der Behandlung des fortgeschrittenen Pankreaskarzinoms konnten in den letzten Jahrzehnten kaum Fortschritte erzielt werden. Die Erkrankung verursacht häufig erst im fortgeschrittenem Stadium klinische Symptome, die Tumoren wachsen invasiv in umgebende Strukturen und metastasieren frühzeitig in Leber und retroperitoneale Lymphknoten. Die verfügbaren Chemotherapien erzielen bisher nur sehr begrenzte Erfolge und wirken bei den meisten Patienten nicht ausreichend, um einen signifikanten Überlebensvorteil zu erzielen. nab-Paclitaxel (Abraxane®) ist ein neues Chemotherapeutikum, welches durch Hochdruck-Homogenisierung von humanem Albumin und herkömmlichem Paclitaxel hergestellt wird und aus 130 nm kleinen, wasserlöslichen Albumin-Paclitaxel-Partikel besteht. Eine kürzlich publizierte große internationale Phase-III-Studie hat einen signifikanten Überlebensvorteil für die Kombinationschemotherapie von nab-Paclitaxel und Gemcitabin gegenüber Gemcitabin berichtet, sodass diese Behandlungsoption in nationale und internationale Leitlinien zur Behandlung des fortgeschrittenen Pankreaskarzinoms Eingang finden wird. Dieser Übersichtsartikel beschäftigt sich sowohl mit klinischen als auch experimentellen Erkenntnissen von nab-Paclitaxel im Pankreaskarzinom, insbesondere den potenziellen Wirkmechanismen wie stromale Depletion, secreted protein acidic and rich in cysteine (SPARC) vermittelter Therapieeffekte und selektiver intratumoraler Anreicherung von nab-Palclitaxel.

 
  • References

  • 1 Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin 2013; 63: 11-30
  • 2 Porta M, Fabregat X, Malats N et al. Exocrine pancreatic cancer: symptoms at presentation and their relation to tumour site and stage. Clin Transl Oncol 2005; 7: 189-197
  • 3 Watanabe I, Sasaki S, Konishi M et al. Onset symptoms and tumor locations as prognostic factors of pancreatic cancer. Pancreas 2004; 28: 160-165
  • 4 Khorana AA, Fine RL. Pancreatic cancer and thromboembolic disease. Lancet Oncol 2004; 5: 655-663
  • 5 Seufferlein T, Porzner M, Becker T et al. S3-guideline exocrine pancreatic cancer. Z Gastroenterol 2013; 51: 1395-1440
  • 6 Seufferlein T, Bachet JB, Van Cutsem E et al. ESMO-ESDO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012; 23 (Suppl. 07) vii33-vii40
  • 7 Burris 3rd HA, Moore MJ, Andersen J et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 1997; 15: 2403-2413
  • 8 Moore MJ, Goldstein D, Hamm J et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007; 25: 1960-1966
  • 9 Wacker B, Nagrani T, Weinberg J et al. Correlation between development of rash and efficacy in patients treated with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib in two large phase III studies. Clin Cancer Res 2007; 13: 3913-3921
  • 10 Van Cutsem E, Vervenne WL, Bennouna J et al. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. J Clin Oncol 2009; 27: 2231-2237
  • 11 Conroy T, Desseigne F, Ychou M et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 2011; 364: 1817-1825
  • 12 Von Hoff DD, Ervin T, Arena FP et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013; 369: 1691-1703
  • 13 Wani MC, Taylor HL, Wall ME et al. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 1971; 93: 2325-2327
  • 14 Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol. Nature 1979; 277: 665-667
  • 15 McGuire WP, Hoskins WJ, Brady MF et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med 1996; 334: 1-6
  • 16 Nabholtz JM, Gelmon K, Bontenbal M et al. Multicenter, randomized comparative study of two doses of paclitaxel in patients with metastatic breast cancer. J Clin Oncol 1996; 14: 1858-1867
  • 17 Bonomi P, Kim K, Fairclough D et al. Comparison of survival and quality of life in advanced non-small-cell lung cancer patients treated with two dose levels of paclitaxel combined with cisplatin versus etoposide with cisplatin: results of an Eastern Cooperative Oncology Group trial. J Clin Oncol 2000; 18: 623-631
  • 18 Oettle H, Arnold D, Esser M et al. Paclitaxel as weekly second-line therapy in patients with advanced pancreatic carcinoma. Anticancer Drugs 2000; 11: 635-638
  • 19 Shukuya T, Yasui H, Boku N et al. Weekly Paclitaxel after failure of gemcitabine in pancreatic cancer patients with malignant ascites: a retrospective study. Jpn J Clin Oncol 2010; 40: 1135-1138
  • 20 Maeda S, Motoi F, Onogawa T et al. Paclitaxel as second-line chemotherapy in patients with gemcitabine-refractory pancreatic cancer: a retrospective study. Int J Clin Oncol 2011; 16: 539-545
  • 21 Gebbia N, Gebbia V. Single agent paclitaxel in the treatment of unresectable and/or metastatic pancreatic adenocarcinoma. Eur J Cancer 1996; 32A: 1822-1823
  • 22 Whitehead RP, Jacobson J, Brown TD et al. Phase II trial of paclitaxel and granulocyte colony-stimulating factor in patients with pancreatic carcinoma: a Southwest Oncology Group study. J Clin Oncol 1997; 15: 2414-2419
  • 23 Lam AP, Sparano JA, Vinciguerra V et al. Phase II study of paclitaxel plus the protein kinase C inhibitor bryostatin-1 in advanced pancreatic carcinoma. Am J Clin Oncol 2010; 33: 121-124
  • 24 Kim YJ, Bang S, Park JY et al. Phase II study of 5-fluorouracil and paclitaxel in patients with gemcitabine-refractory pancreatic cancer. Cancer Chemother Pharmacol 2009; 63: 529-533
  • 25 Gradishar WJ. Albumin-bound nanoparticle paclitaxel. Clin Adv Hematol Oncol 2005; 3: 348-349
  • 26 Kumar GN, Walle UK, Bhalla KN et al. Binding of taxol to human plasma, albumin and alpha 1-acid glycoprotein. Res Commun Chem Pathol Pharmacol 1993; 80: 337-344
  • 27 Brouwer E, Verweij J, De Bruijn P et al. Measurement of fraction unbound paclitaxel in human plasma. Drug Metab Dispos 2000; 28: 1141-1145
  • 28 Ibrahim NK, Desai N, Legha S et al. Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin Cancer Res 2002; 8: 1038-1044
  • 29 Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 2008; 132: 171-183
  • 30 Yardley DA. nab-Paclitaxel mechanisms of action and delivery. J Control Release 2013; 170: 365-372
  • 31 Gradishar WJ, Tjulandin S, Davidson N et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 2005; 23: 7794-7803
  • 32 Socinski MA, Langer CJ, Okamoto I et al. Safety and efficacy of weekly nab(R)-paclitaxel in combination with carboplatin as first-line therapy in elderly patients with advanced non-small-cell lung cancer. Ann Oncol 2013; 24: 314-321
  • 33 Socinski MA, Bondarenko I, Karaseva NA et al. Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: final results of a phase III trial. J Clin Oncol 2012; 30: 2055-2062
  • 34 Von Hoff DD, Ramanathan RK, Borad MJ et al. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol 2011; 29: 4548-4554
  • 35 Hosein PJ, de Lima Lopes Jr G, Pastorini VH et al. A phase II trial of nab-Paclitaxel as second-line therapy in patients with advanced pancreatic cancer. Am J Clin Oncol 2013; 36: 151-156
  • 36 Ko AH, Truong TG, Kantoff E et al. A phase I trial of nab-paclitaxel, gemcitabine, and capecitabine for metastatic pancreatic cancer. Cancer Chemother Pharmacol 2012; 70: 875-881
  • 37 Alvarez R, Musteanu M, Garcia-Garcia E et al. Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. Br J Cancer 2013; 109: 926-933
  • 38 Sparreboom A, Scripture CD, Trieu V et al. Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clin Cancer Res 2005; 11: 4136-4143
  • 39 Gardner ER, Dahut WL, Scripture CD et al. Randomized crossover pharmacokinetic study of solvent-based paclitaxel and nab-paclitaxel. Clin Cancer Res 2008; 14: 4200-4205
  • 40 John TA, Vogel SM, Tiruppathi C et al. Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. Am J Physiol Lung Cell Mol Physiol 2003; 284: L187-L196
  • 41 Desai N, Trieu V, Yao Z et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 2006; 12: 1317-1324
  • 42 Maeda H, Wu J, Sawa T et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000; 65: 271-284
  • 43 Prabhakar U, Maeda H, Jain RK et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 2013; 73: 2412-2417
  • 44 Neesse A, Frese KK, Chan DS et al. SPARC independent drug delivery and anti-tumor effects of nab-paclitaxel in genetically engineered mice. Gut 2013; Sep 25 [Epub ahead of print].
  • 45 Frese KK, Neesse A, Cook N et al. nab-Paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer. Cancer Discov 2012; 2: 260-269
  • 46 Neesse A, Michl P, Frese KK et al. Stromal biology and therapy in pancreatic cancer. Gut 2011; 60: 861-868
  • 47 Thompson CB, Shepard HM, O'Connor PM et al. Enzymatic depletion of tumor hyaluronan induces antitumor responses in preclinical animal models. Mol Cancer Ther 2010; 9: 3052-3064
  • 48 Olive KP, Jacobetz MA, Davidson CJ et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009; 324: 1457-1461
  • 49 Jacobetz MA, Chan DS, Neesse A et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 2013; 62: 112-120
  • 50 Provenzano PP, Cuevas C, Chang AE et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 2012; 21: 418-429
  • 51 Sato N, Fukushima N, Maehara N et al. SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor-stromal interactions. Oncogene 2003; 22: 5021-5030
  • 52 Mantoni TS, Schendel RR, Rodel F et al. Stromal SPARC expression and patient survival after chemoradiation for non-resectable pancreatic adenocarcinoma. Cancer Biol Ther 2008; 7: 1806-1815
  • 53 Infante JR, Matsubayashi H, Sato N et al. Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. J Clin Oncol 2007; 25: 319-325
  • 54 Shao H, Tang H, Salavaggione OE et al. Improved response to nab-paclitaxel compared with cremophor-solubilized paclitaxel is independent of secreted protein acidic and rich in cysteine expression in non-small cell lung cancer. J Thorac Oncol 2011; 6: 998-1005
  • 55 Weerapana E, Wang C, Simon GM et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 2010; 468: 790-795