Rofo 2014; 186(4): 367-376
DOI: 10.1055/s-0034-1366097
Promotionspreis 2013
© Georg Thieme Verlag KG Stuttgart · New York

Magnetic Resonance Imaging of Single Co-Labeled Mesenchymal Stromal Cells after Intracardial Injection in Mice

Detektion einzelner doppelt markierter mesenchymaler Stromazellen in der Maus mittels MRT nach intrakardialer Injektion
J. Salamon
1   Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg
,
D. Wicklein
2   Institute of Anatomy II: Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg
,
M. Didié
3   Institute of Pharmacology, University of Goettingen
,
C. Lange
4   Department of Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg
,
U. Schumacher
2   Institute of Anatomy II: Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg
,
G. Adam
1   Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg
,
K. Peldschus
1   Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg
› Author Affiliations
Further Information

Publication History

05 November 2013

16 January 2014

Publication Date:
28 March 2014 (online)

Abstract

Purpose: The aim of this study was to establish co-labeling of mesenchymal stromal cells (MSC) for the detection of single MSC in-vivo by MRI and histological validation.

Materials and Methods: Mouse MSC were co-labeled with fluorescent iron oxide micro-particles and carboxyfluorescein succinimidyl ester (CFSE). The cellular iron content was determined by atomic absorption spectrometry. Cell proliferation and expression of characteristic surface markers were determined by flow cytometry. The chondrogenic differentiation capacity was assessed. Different amounts of cells (n1 = 5000, n2 = 15 000, n3 = 50 000) were injected into the left heart ventricle of 12 mice. The animals underwent sequential MRI on a clinical 3.0 T scanner (Intera, Philips Medical Systems, Best, The Netherlands). For histological validation cryosections were examined by fluorescent microscopy.

Results: Magnetic and fluorescent labeling of MSC was established (mean cellular iron content 23.6 ± 3 pg). Flow cytometry showed similar cell proliferation and receptor expression of labeled and unlabeled MSC. Chondrogenic differentiation of labeled MSC was verified. After cell injection MRI revealed multiple signal voids in the brain and fewer signal voids in the kidneys. In the brain, an average of 4.6 ± 1.2 (n1), 9.0 ± 3.6 (n2) and 25.0 ± 1.0 (n3) signal voids were detected per MRI slice. An average of 8.7 ± 3.1 (n1), 22.0 ± 6.1 (n2) and 89.8 ± 6.5 (n3) labeled cells per corresponding stack of adjacent cryosections could be detected in the brain. Statistical correlation of the numbers of MRI signal voids in the brain and single MSC found by histology revealed a correlation coefficient of r = 0.91.

Conclusion: The study demonstrates efficient magnetic and fluorescent co-labeling of MSC and their detection on a single cell level in mice by in-vivo MRI and histology. The described techniques may broaden the methods for in-vivo tracking of MSC.

Key Points:

• Detection of single magnetically labeled MSC in-vivo using a clinical 3.0 T MRI is possible.

• Fluorescent and magnetic co-labeling does not affect cell vitality.

• The number of cells detected by MRI and histology has a high correlation.

Citation Format:

• Salamon J, Wicklein D, Didié M et al. Magnetic Resonance Imaging of Single Co-Labeled Mesenchymal Stromal Cells after Intracardial Injection in Mice. Fortschr Röntgenstr 2014; 186: 367 – 376

Zusammenfassung

Ziel: Etablierung einer Doppelmarkierung mesenchymaler Stromazellen (MSZ) zur in-vivo Detektion einzelner MSZ mittels MRT und zur histologischen Validierung.

Material und Methoden: Murine MSZ wurden mit fluoreszierenden Eisenmikropartikeln und Carboxyfluorescein Succinimidyl Ester (CFSE) markiert. Der zelluläre Eisengehalt wurde mittels Atomabsorptionsspektrometrie bestimmt. Zellprolieferation und Expression charakteristischer Oberflächenmarker wurden mittels Durchflusszytometrie bestimmt. Die chondrogene Differenzierungskapazität wurde überprüft. Verschiedene Zellanzahlen (n1 = 5000, n2 = 15 000, n3 = 50 000) wurden bei 12 Mäusen in den linken Herzventrikel injiziert. Es erfolgte die sequenzielle MRT der Tiere an einem klinischen 3.0 T MRT. Zur histologischen Validierung wurden Kryostatschnitte fluoreszensmikroskopisch untersucht.

Ergebnisse: Die magnetische und fluoreszierende Doppelmarkierung von MSZ wurde etabliert (mittlerer zellulärer Eisengehalt 23,6 ± 4,3 pg). Durchflusszytometrisch zeigten sich ähnliche Zellprolieferationsraten und Rezeptorexpressionsprofile von markierten und unmarkierten MSZ. Die chondrogene Differenzierung der doppelt markierten MSZ wurde verifiziert. Nach Zellinjektion zeigten sich im MRT multiple Signalauslöschungen im Hirn und geringer in der Niere. Im Hirn fanden sich durchschnittlich 4,6 ± 1,2 (n1), 9,0 ± 3,6 (n2) und 25,0 ± 1,0 (n3) Signalauslöschungen pro Schicht. Durchschnittlich fanden sich 8,7 ± 3,1 (n1), 22,0 ± 6,1 (n2) und 89,8 ± 6,5 (n3) Zellen pro korrespondierendem Kryostatschnitt. Die statistische Korrelation der mittels MRT detektierten Signalauslöschungen und der histologisch nachgewiesenen Zellen ergab einen Korrelationskoeffizienten von r = 0,91.

Schlussfolgerung: Die Studie zeigt die erfolgreiche magnetische und fluoreszierende Doppelmarkierung von MSZ und deren Detektion auf Einzelzellniveau mittels in vivo MRT und Histologie. Die beschriebenen Techniken tragen zur Erweiterung der Methoden für das in vivo Monitoring von MSZ bei.

Kernaussagen:

• Die Detektion einzelner magnetisch markierter Zellen in vivo im 3,0 T MRT ist möglich.

• Die magnetische und Fluoreszenzmarkierung haben keinen negativen Einfluss auf die Zellvitalität.

• Die Anzahl mittels MRT und Histologie detektierter Zellen zeigt eine hohe Korrelation.

 
  • References

  • 1 Anderson SA, Shukaliak-Quandt J, Jordan EK et al. Magnetic resonance imaging of labeled T-cells in a mouse model of multiple sclerosis. Ann Neurol 2004; 55: 654-659
  • 2 Arbab AS, Pandit SD, Anderson SA et al. Magnetic resonance imaging and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis. Stem Cells 2006; 24: 671-678
  • 3 Bos C, Delmas Y, Desmouliere A et al. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 2004; 233: 781-789
  • 4 Shapiro EM, Gonzalez-Perez O, Manuel Garcia-Verdugo J et al. Magnetic resonance imaging of the migration of neuronal precursors generated in the adult rodent brain. Neuroimage 2006; 32: 1150-1157
  • 5 Heyn C, Ronald JA, Ramadan SS et al. In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 2006; 56: 1001-1010
  • 6 Fleige G, Seeberger F, Laux D et al. In vitro characterization of two different ultrasmall iron oxide particles for magnetic resonance cell tracking. Invest Radiol 2002; 37: 482-488
  • 7 Shapiro EM, Skrtic S, Koretsky AP. Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 2005; 53: 329-338
  • 8 Sipe JC, Filippi M, Martino G et al. Method for intracellular magnetic labeling of human mononuclear cells using approved iron contrast agents. Magn Reson Imaging 1999; 17: 1521-1523
  • 9 Frank JA, Zywicke H, Jordan EK et al. Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol 2002; 9: S484-S487
  • 10 Sun R, Dittrich J, Le-Huu M et al. Physical and biological characterization of superparamagnetic iron oxide- and ultrasmall superparamagnetic iron oxide-labeled cells: a comparison. Invest Radiol 2005; 40: 504-513
  • 11 Foster-Gareau P, Heyn C, Alejski A et al. Imaging single mammalian cells with a 1.5 T clinical MRI scanner. Magn Reson Med 2003; 49: 968-971
  • 12 Heyn C, Ronald JA, Mackenzie LT et al. In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn Reson Med 2006; 55: 23-29
  • 13 Shapiro EM, Sharer K, Skrtic S et al. In vivo detection of single cells by MRI. Magn Reson Med 2006; 55: 242-249
  • 14 Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315-317
  • 15 Grove JE, Bruscia E, Krause DS. Plasticity of bone marrow-derived stem cells. Stem Cells 2004; 22: 487-500
  • 16 Jaquet K, Krause KT, Denschel J et al. Reduction of myocardial scar size after implantation of mesenchymal stem cells in rats: what is the mechanism?. Stem Cells Dev 2005; 14: 299-309
  • 17 Morigi M, Introna M, Imberti B et al. Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice. Stem Cells 2008; 26: 2075-2082
  • 18 Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815-1822
  • 19 Le BlancK. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 2003; 5: 485-489
  • 20 McIntosh K, Zvonic S, Garrett S et al. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells 2006; 4: 1246-1253
  • 21 McTaggart SJ, Atkinson K. Mesenchymal stem cells: immunobiology and therapeutic potential in kidney disease. Nephrology (Carlton) 2007; 12: 44-52
  • 22 Lange C, Brunswig-Spickenheier B, Cappallo-Obermann H et al. Radiation rescue: mesenchymal stromal cells protect from lethal irradiation. PLoS One 2011; 5: e14486
  • 23 Koc ON, Gerson SL, Cooper BW et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 2000; 18: 307-316
  • 24 Falagna V, Chartier M, Yufit T et al. Autologous Bone Marrow-Derived Cultured Mesenchymal Stem Cells Dilivered in a Fibrin Spray Accelerate Healing in Murine and Human Cutaneous Wounds. Tissue Engineering 2007; 13: 1299-1312
  • 25 Bruder SP, Jaiswal N, Ricalton NS et al. Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res 1998; S247-S256
  • 26 Johnstone B, Yoo JU. Autologous mesenchymal progenitor cells in articular cartilage repair. Clin Orthop Relat Res 1999; S156-S162
  • 27 Young RG, Butler DL, Weber W et al. Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res 1998; 16: 406-413
  • 28 Karussis D, Karageorgiou C, Vaknin-Dembinsky A et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 2010; 67: 1187-1194
  • 29 Dexter TM, Allen TD, Lajtha LG. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 1977; 91: 335-344
  • 30 Gordon MY, Clarke D, Atkinson J et al. Hemopoietic progenitor cell binding to the stromal microenvironment in vitro. Exp Hematol 1990; 18: 837-842
  • 31 Weimar IS, Miranda N, Muller EJ et al. Hepatocyte growth factor/scatter factor (HGF/SF) is produced by human bone marrow stromal cells and promotes proliferation, adhesion and survival of human hematopoietic progenitor cells (CD34+). Exp Hematol 1998; 26: 885-894
  • 32 Hauger O, Frost EE, van Heeswijk R et al. MR evaluation of the glomerular homing of magnetically labeled mesenchymal stem cells in a rat model of nephropathy. Radiology 2006; 238: 200-210
  • 33 Ittrich H, Lange C, Togel F et al. In vivo magnetic resonance imaging of iron oxide-labeled, arterially-injected mesenchymal stem cells in kidneys of rats with acute ischemic kidney injury: detection and monitoring at 3T. J Magn Reson Imaging 2007; 25: 1179-1191
  • 34 Kraitchman DL, Heldman AW, Atalar E et al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 2003; 107: 2290-2293
  • 35 Bulte JW. In vivo MRI cell tracking: clinical studies. Am J Roentgenol Am J Roentgenol 2009; 193: 314-325
  • 36 Bulte JW. Science to practice: can stem cells be labeled inside the body instead of outside?. Radiology 2013; 8: e74658
  • 37 Khurana A, Chapelin F, Beck G et al. Iron administration before stem cell harvest enables MR imaging tracking after transplantation. Radiology 2013; 269: 186-197
  • 38 Schrepfer S, Deuse T, Lange C et al. Simplified protocol to isolate, purify, and culture expand mesenchymal stem cells. Stem Cells Dev 2007; 16: 105-107
  • 39 Lange C, Schroeder J, Lioznov MV et al. High-potential human mesenchymal stem cells. Stem Cells Dev 2005; 14: 70-80
  • 40 Shapiro EM, Skrtic S, Sharer K et al. MRI detection of single particles for cellular imaging. Proc Natl Acad Sci USA 2004; 101: 10901-10906
  • 41 Arbab AS, Yocum GT, Kalish H et al. Efficient magnetic cell labeling with protamine sulphate complaxed to ferumoxides for cellular MRI. Blood 2004; 104: 1217-1223
  • 42 Kostura L, Kraitchman DL, Mackay AM et al. Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed 2004; 17: 513-517
  • 43 Ittrich H, Lange C, Dahnke H et al. [Labeling of mesenchymal stem cells with different superparamagnetic particles of iron oxide and detectability with MRI at 3T]. Fortschr Röntgenstr 2005; 177: 1151-1163
  • 44 Schrepfer S, Deuse T, Reichenspurner H et al. Stem cell transplantation: the lung barrier. Transplant Proc 2007; 39: 573-576
  • 45 Springer ML, Sievers RE, Viswanathan MN et al. Closed-chest cell injections into mouse myocardium guided by high-resolution echocardiography. Am J Physiol Heart Circ Physiol 2005; 289: H1307-H1314
  • 46 Inderbitzin D, Stoupis C, Sidler D et al. Abdominal magnetic resonance imaging in small rodents using a clinical 1.5 T MR scanner. Methods 2007; 43: 46-53
  • 47 Bensidhoum M, Chapel A, Francois S et al. Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood 2004; 103: 3313-3319
  • 48 Krug R, Stehling C, Kelley DA et al. Imaging of the musculoskeletal system in vivo using ultra-high field magnetic resonance at 7 T. Invest Radiol 2009; 44: 613-618
  • 49 de Vries IJ, Lesterhuis WJ, Barentsz JO et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nature Biotechnology 2005; 23: 1407-1413
  • 50 Toso C, Vallee JP, Moral P et al. Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am J Transplant 2008; 8: 701-706
  • 51 Peldschus K, Kaul M, Lange C et al. Magnetic resonance imaging of single SPIO labeled mesenchymal stem cells at 3 Tesla. Fortschr Röntgenstr 2007; 179: 473-479
  • 52 Koga H, Engebretsen L, Brinchmann JE et al. Mesenchymal stem cell-based therapy for cartilage repair: a review. Knee Surg Sports Traumatol Arthrosc 2009; 17: 1289-1297
  • 53 Erices AA, Allers CI, Conget PA et al. Human cord blood-derived mesenchymal stem cells home and survive in the marrow of immunodeficient mice after systemic infusion. Cell Transplant 2003; 12: 555-561 24