Subscribe to RSS
DOI: 10.1055/s-0034-1366425
Chronic Thromboembolic Pulmonary Hypertension (CTEPH) – Potential Role of Multidetector-Row CT (MD-CT) and MR Imaging in the Diagnosis and Differential Diagnosis of the Disease[1]
Die chronisch-thromboembolische pulmonale Hypertonie (CTEPH) – potenzieller Stellenwert von Mehrschicht-CT und MRT in Diagnostik und Differentialdiagnostik der ErkrankungPublication History
16 December 2013
21 March 2014
Publication Date:
22 April 2014 (online)
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) can be defined as pulmonary hypertension (resting mean pulmonary arterial pressure of 25 mm Hg or more determined at right heart catheterization) with persistent pulmonary perfusion defects. It is a rare, but underdiagnosed disease with estimated incidences ranging from 0.5 % to 3.8 % of patients after an acute pulmonary embolism (PE), and in up to 10 % of those with a history of recurrent PE. CTEPH is the only form of pulmonary hypertension that can be surgically treated leading to normalization of pulmonary hemodynamics and exercise capacity in the vast majority of patients. The challenges for imaging in patients with suspected CTEPH are fourfold: the imaging modality should have a high diagnostic accuracy with regard to the presence of CTEPH and allow for differential diagnosis. It should enable detection of patients suitable for PEA with great certainty, and allow for quantification of PH by measuring pulmonary hemodynamics (mPAP and PVR), and finally, it can be used for therapy monitoring. This overview tries to elucidate the potential role of ECG-gated multidetector CT pulmonary angiography (MD-CTPA) and MR imaging, and summarizes the most important results that have been achieved so far. Generally speaking, ECG-gated MD-CTPA is superior to MR in the assessment of parenchymal and vascular pathologies of the lung, and allows for the assessment of cardiac structures. The implementation of iodine maps as a surrogate for lung perfusion enables functional assessment of lung perfusion by CT. MR imaging is the reference standard for the assessment of right heart function and lung perfusion, the latter delineating typical wedge-shaped perfusion defects in patients with CTEPH. New developments show that with MR techniques, an estimation of hemodynamic parameters like mean pulmonary arterial pressure and pulmonary vascular resistance will be possible. CT and MR imaging should be considered as complementary investigations providing comprehensive information in patients with CTEPH.
Citation Format:
• Wirth G, Brüggemann K, Bostel T et al. Chronic Thromboembolic Pulmonary Hypertension (CTEPH) – Potential Role of Multidetector-Row CT (MD-CT) and MR Imaging in the Diagnosis and Differential Diagnosis of the Disease. Fortschr Röntgenstr 2014; 186: 751 – 761
Zusammenfassung
Die chronisch-thromboembolische pulmonale Hypertonie (CTEPH) kann als pulmonalarterielle Hypertonie (mittlerer pulmonalarterieller Ruhedruck > 25 mm Hg, bestimmt im Rahmen einer Rechtsherzkatheteruntersuchung) mit persistierenden Perfusionsdefekten nach einer einmaligen oder wiederholten Lungenembolie definiert werden. Es handelt sich um eine seltene, aber eher unterdiagnostizierte Erkrankung, deren Inzidenz zwischen 0,5 und 3,8 % nach einer akuten, und bis zu 10 % nach wiederholten Lungenembolien geschätzt wird. Die CTEPH ist die einzige chirurgisch therapierbare Form einer pulmonalen Hypertonie; durch eine erfolgreiche Operation kommt es zur Normalisierung der pulmonalen Hämodynamik und der körperlichen Belastbarkeit. Die Herausforderungen für die Bildgebung bei Patienten mit vermuteter CTEPH sind: hohe diagnostische Genauigkeit bezüglich dem Nachweis einer CTEPH und ihrer differentialdiagnostischen Abgrenzung, Erkennung chirurgisch therapierbarer Patienten, sichere Bestimmung der pulmonalen Hämodynamik (mittlerer pulmonalarterieller Druck und Lungengefäßwiderstand) und Eignung zur Therapieverlaufskontrolle. Diese Übersicht versucht, die potenzielle Rolle der EKG-getriggerten Mehrschicht-CT und der MRT in der Diagnostik der CTEPH zu beleuchten, und fasst die bis dahin erzielten Resultate zusammen. Allgemein zeichnen sich Vorteile für die MS-CT hinsichtlich der Detektion vaskulärer und parenchymatöser Veränderungen ab; mit EKG-Triggerung ermöglicht sie auch eine Beurteilung der kardialen Strukturen. Die Implementierung der Dual-Energy-Technik ermöglicht ein Jod-Mapping des Lungenparenchyms und damit eine Beurteilung der Lungenperfusion. Die MRT gilt nach wie vor als Referenzverfahren für die Beurteilung von Herzfunktion und Lungenperfusion. Neuere Entwicklungen zeigen, dass das Verfahren auch eine Abschätzung der pulmonalen Hämodynamik ermöglicht. Aktuell können MS-CT und MRT als komplementäre Untersuchungsverfahren angesehen werden, die umfassende Informationen bei Patienten mit vermuteter CTEPH ermöglichen.
1 dedicated to Prof. Hans Schild on the occasion of his 60th anniversary and one of my most important teachers of radiology. K-FK
-
References
- 1 Hythe J. Chronic thromboembolic pulmonary hypertension: a review of current practice. Prog Cardiovasc Dis 2012; 55: 134-143
- 2 Keogh AM, Mayer E, Benza L et al. Interventional and surgical modalities of treatment in pulmonary hypertension. J Am Coll Cardiol 2009; 54: S67-S77
- 3 Pepke-Zaba J, Delcroix M, Lang I et al. Chronic thromboembolic pulmonary hypertension (CTEPH). Results from an international prospective registry. Circulation 2011; 124: 1973-1981
- 4 Becattini C, Agnelli G, Pesavento R et al. Incidence of chronic thromboembolic pulmonary hypertension after a first episode of pulmonary embolism. Chest 2006; 130: 172-175
- 5 Pengo V, Lensing AW, Prins MH et al. Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N Engl J Med 2004; 350: 2257-2264
- 6 Klok FA, van Kralingen KW, van Dijk AP et al. Prospective cardiopulmonary screening program to detect chronic thromboembolic pulmonary hypertension in patients after acute pulmonary embolism. Haematologica 2010; 95: 970-975
- 7 Berghaus TM, Barac M, von Scheidt W et al. Echocardiographic evaluation for pulmonary hypertension after recurrent pulmonary embolism. Thromb Res 2011; 128: e142-e147
- 8 Frazier AA, Galvib JR, Franks TJ et al. Pulmonary vasculature: hypertension and infarction. Radiographics 2000; 20: 491-524
- 9 Darteville P, Fadel E, Mussot S et al. Chronic thromboembolic pulmonary hypertension. Eur Respir J 2004; 23: 637-648
- 10 Piazza G, Goldhaber SZ. Chronic thromboembolic pulmonary hypertension. N Engl J Med 2011; 364: 351-360
- 11 Simonneau G, Robbins IM, Beghetti M et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2009; 54: S43-S54
- 12 Mayer E, Jenkins D, Lindner J et al. Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: results from an international prospective registry. J Thorac Cardiovasc Surg 2011; 141: 702-710
- 13 Jaff MR, McMurtry MS, Archer SL et al. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension. A scientific statement from the American Heart Association. Circulation 2011; 123: 1788-1830
- 14 Galié N, Hoeper MM, Humbert M et al. Guidelines for the diagnosis and treatment of pulmonary hypertension. The task force for the diagnosis and treatment of pulmonary hypertension of the Europen Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 2009; 30: 2493-2537
- 15 Brown K, Gutierrez AJ, Mohammed T-LH et al. ACR appropriateness criteria® pulmonary hypertension. J Thorac Imaging 2013; 28: W57-W60
- 16 Kim NH, Delcroix M, Jenkins DP et al. Chronic thromboembolic pulmonary hyptertension. J Am Coll Cardiol 2013; 62: D92-D99
- 17 Wilkens H, Lang I, Behr J et al. Chronic thromboembolic pulmonary hypertension (CTEPH): updated recommendations of the Cologne consensus conference 2011. Int J Cardiol 2011; 154S: S54-S60
- 18 Pena E, Dennie C, Veinot J et al. Pulmonary hypertension: how the radiologist can help. Radiographics 2012; 32: 9-32
- 19 Tsai IC, Tsai WL, Wang KY et al. Comprehensive MDCT evaluation of patients with pulmonary hypertension: diagnosing underlying causes with the updated Dana Point 2008 classification. Amer J Roentgenol 2011; 197: W471-W481
- 20 Castaner E, Gallarda X, Ballesteros E et al. CT diagnosis of chronic pulmonary thromboembolism. Radiographics 2009; 29: 31-53
- 21 Grosse C, Grosse A. CT findings in diseases associated with pulmonary hypertension: a current review. Radiographics 2010; 30: 1753-1777
- 22 Kreitner KFJ, Ley S, Kauczor HU et al. Chronic thromboembolic pulmonary hypertension: pre-and postoperative assessment with breath-hold MR imaging techniques. Radiology 2004; 232: 535-543
- 23 Rajaram S, Swift AJ, Capener D et al. Diagnostic accuracy of contrast-enhanced MR angiography and unenhanced proton MR imaging compared with CT pulmonary angiography in chronic thromboembolic pulmonary hypertension. Eur Radiol 2012; 22: 310-317
- 24 Ley S, Ley-Zaporozhan J, Pitton MB et al. Diagnostic performance of state-of-the-art imaging techniques for morphological assessment of vascular abnormalities in patients with chronic thromboembolic pulmonary hypertension (CTEPH). Eur Radiol 2012; 22: 607-616
- 25 Reichelt A, Hoeper MM, Galanski M et al. Chronic thromboembolic pulmonary hypertension: evaluation with 64-detetcor row CT versus digital subtraction angiography. Eur J Radiol 2009; 71: 49-54
- 26 Sugiura T, Tanabe N, Matsuura Y et al. Role of 320-slice CT imaging in the diagnostic workup of patients with chronic thromboembolic pulmonary hypertension. Chest 2013; 143: 1070-1077
- 27 He J, Fang W, Lu B et al. Diagnosis of chronic thromboembolic pulmonary hypertension: comparison of ventilation/perfusion scanning and multidetector computed tomography pulmonary angiography with pulmonary angiography. Nucl Med Commun 2012; 33: 459-463
- 28 Tanabe N, Sugiara T, Tatsumi K. Recent progress in the diagnosis and management of chronic thromboembolic pulmonary hypertension. Respiratory Investigation 2013; 51: 134-146
- 29 Tunariu N, Gibbs SJR, Win Z et al. Ventilation-perfusion scintigraphy is more sensitive than multidetector CTPA in detecting chronic thromboembolic pulmonary disease as a treatable cause of pulmonary hypertension. J Nucl Med 2007; 48: 680-684
- 30 Kreitner KF, Kunz RP, Ley S et al. Chronic thromboembolic pulmonary hypertension – assessment by magnetic resonance imaging. Eur Radiol 2007; 17: 605-609
- 31 Nikolaou K, Schoenberg SO, Attenberger U et al. Pulmonary arterial hypertension: diagnosis with fast perfusion MR imaging and high-spatial-resolution MR angiography – preliminary experience. Radiology 2005; 236: 694-703
- 32 Ley S, Kreitner KF, Morgenstern I et al. Bronchopulmonary shunts in patients with chronic thromboembolic pulmonary hypertension: evaluation with helical CT and MR imaging. Am J Roentgenol Amer J Roentgenol 2002; 179: 1209-1215
- 33 Remy-Jardin M, Duhamel A, Deken V et al. Systemic collateral supply in patients with chronic thromboembolic and primary pulmonary hypertension: assessment with multi-detector row helical CT angiography. Radiology 2005; 235: 274-281
- 34 Ley S, Grünig E, Kiely D et al. Computed tomography and magnetic resonance imaging of pulmonary hypertension: pulmonary vessels and right ventricle. J Magn Reson Imaging 2010; 32: 1313-1324
- 35 Ley S, Fink C, Ley-Zaporozhan J et al. Value of high spatial and high temporal resolution magnetic resonance angiography for differentiation between idiopathic and thromboembolic pulmonary hypertension: initial results. Eur Radiol 2005; 15: 2256-2263
- 36 Kreitner KF, Ley-Zaporozhan J, Ley S et al. Value of MR perfusion compared with MR angiography for assessment of small and large vessel disease in patients with chronic thromboembolic pulmonary hypertension. RSNA 2010; http://abstract.rsna.org/index.cfm
- 37 Rajaram S, Swift AJ, Telfer A et al. 3D contrast-enhanced lung perfusion MRI is an effective screening tool for chronic thromboembolic pulmonary hypertension: results from the ASPIRE Registry. Thorax 2013; 68: 677-678
- 38 Hoey ETD, Mirsadraee S, Pepke-Zaba J et al. Dual energy CT angiography for assessment of regional pulmonary perfusion in patients with chronic thromboembolic pulmonary hypertension: initial experience. Am J Roentgenol Amer J Roentgenol 2011; 196: 524-532
- 39 Renard B, Remy-Martin M, Santangelo T et al. Dual-energy CT angiography of chronic thromboembolic disease: can it help recognize links between the severity of pulmonary arterial obstruction and perfusion defects?. Eur J Radiol 2011; 79: 467-472
- 40 Dournes G, Verdier D, Montaudon M et al. Dual-energy CT perfusion and angiography on chronic thromboembolic pulmonary hypertension: diagnostik accuracy and concordance with radionuclide scinitigraphy. Eur Radiol 2014; 24: 42-51
- 41 Meinel FG, Graef A, Thierfelder KM et al. Automated quantification of pulmonary perfused blood volume by dual-energy CTPA in chronic thromboembolic pulmonary hypertension. Fortschr Roentgenstr 2014; 186: 151-156
- 42 Becker HC, Johnson T. Cardiac CT for the assessment of chest pain: imaging techniques and clinical results. Eur J Radiol 2012; 81: 3675-3679
- 43 Ayaram D, Bellolio F, Murad MH et al. Triple rule-out computed tomographic angiography for chest pain: a diagnostic systematic review and meta-analysis. Acad Emerg Med 2013; 20: 861-871
- 44 Bostel T, Stork K, Schneider J et al. Die EKG-getriggerte 128-Schicht-CT bei der Abklärung von Patienten mit chronisch-thromboembolischer pulmonaler Hypertonie (CTEPH): Erste Erfahrungen. Fortschr Roentgenstr 2010; 182: S193
- 45 D’Arminini AM, Zanotti G, Ghio S et al. Reverse right ventricular remodeling after pulmonary endarterectomy. J Thorac Cardiovasc Surg 2007; 133: 162-168
- 46 Reesink HJ, Marcus JT, Tulevski II et al. Reverse right ventricular remodeling after pulmonary endarerterectomy in patient with chronic thromboembolic pulmonary hypertension: utility of magnetic resonance imaging to demonstrate restoration of the right ventricle. J Thorac Cardiovasc Surg 2007; 133: 58-64
- 47 Iino M, Dymarkowski S, Chaothawee L et al. Time course of reversed cardiac remodeling after pulmonary endarterectomy in patients with chronic pulmonary throboembolism. Eur Radiol 2008; 18: 792-79
- 48 Mauritz GJ, Vonk-Noordegraf A, Kind T et al. Pulmonary endarterectomy normalizes interventricular dyssynchrony and right ventricular systolic wall stress. J Cardiovasc Magn Reson 2012; 14: 5
- 49 Kreitner KF. Noninvasive imaging of pulmonary hypertension. Semin Respir Crit Care Med 2014; 35: 99-111
- 50 Liu M, Ma Z, Guo X et al. Computed tomographic pulmonary angiography in the assessment of severity of chronic thromboembolic pulmonary hypertension and right ventricular dysfunction. Eur J Radiol 2011; 80: e462-e469
- 51 Liu M, Ma Z, Guo X et al. Cardiovascular parameters of computed tomographic pulmonary angiography to assess pulmonary vascular resistance in patients with chronic thromboembolic pulmonary hypertension. Int J Cardiol 2013; 164: 295-300
- 52 Garcia-Alvarez A, Fernandez-Friera L, Mirelis JG et al. Non-invesive estimation of pulmonary vascular resistance with cardiac magnetic resonance. Eur Heart J 2011; 32: 2438-2445
- 53 Swift AJ, Rajaram S, Hurdman J et al. Noninvasive estimation of PA pressure, flow, and resistance with CMR imaging. J Am Coll Cardiol Img 2013; 6: 1036-1047
- 54 Kreitner KF, Wirth GM, Krummenauer F et al. Non-invasive assessment of pulmonary hemodynamics in patients with chronic thromboembolic pulmonary hypertension (CTEPH) by high temporal resolution phase-contrast MR imaging: correlation with simultaneous invasive pressure recordings. Circ Cardiovasc Imaging 2013; 6: 722-729
- 55 Wijesurija S, Chandratreya L, Medford AR. Chronic pulmonary emboli and radiologic mimics on CT pulmonary angiography. Chest 2013; 143: 1460-1471
- 56 Bendel E, Maleszewski JJ, Araoz P. Imaging sarcomas of the great vessels and heart. Semin Ultrasound CT MRI 2011; 32: 377-404
- 57 Rajaram S, Swift AJ, Davies C et al. Primary pulmonary artery sarcoma and coexisting chronic thromboemblic pulmonary hypertension. Am J Respir Crit Care Med 2013; 188: e7-e8
- 58 Toledano K, Guralnik L, Lorber A et al. Pulmonary arteries involvement in Takayasu's arteritis: two cases and literature review. Semin Arthritis Rheum 2011; 41: 461-470
- 59 Bächler P, Pinochet N, Sotelo J et al. Assessment of normal flow patterns in the pulmonary circulation by using 4D magnetic resonance velocity mapping. Magn Reson Imaging 2013; 31: 178-188
- 60 Reiter G, Reiter U, Kovacs G et al. Magnetic resonance-derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure. Circ Cardiovasc Imaging 2008; 1: 23-30