Rofo 2014; 186(11): 1016-1021
DOI: 10.1055/s-0034-1366429
Neuroradiology
© Georg Thieme Verlag KG Stuttgart · New York

Spinal Cord Motion: Influence of Respiration and Cardiac Cycle

Rückenmarksbewegungen: Bestimmung des Einflusses von Atmung und Herzzyklus mittels MRT
S. Winklhofer
1   Department of Neuroradiology, RWTH Aachen University Hospital, Aachen, Germany
2   Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland
,
F. Schoth
3   Department of Diagnostic Radiology, RWTH Aachen University Hospital, Germany
,
P. Stolzmann
2   Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland
,
T. Krings
4   Division of Neuroradiology, Department of Medical Imaging, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
,
M. Mull
1   Department of Neuroradiology, RWTH Aachen University Hospital, Aachen, Germany
,
M. Wiesmann
1   Department of Neuroradiology, RWTH Aachen University Hospital, Aachen, Germany
,
C. P. Stracke
1   Department of Neuroradiology, RWTH Aachen University Hospital, Aachen, Germany
5   Department of Neuroradiology, Alfried-Krupp-Hospital, Essen, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

18. Januar 2014

21. März 2014

Publikationsdatum:
22. April 2014 (online)

Abstract

Purpose: To assess physiological spinal cord motion during the cardiac cycle compared with the influence of respiration based on magnetic resonance imaging (MRI) measurements.

Materials and Methods: Anterior-posterior spinal cord motion within the spinal canal was assessed in 16 healthy volunteers (median age, 25 years) by cardiac-triggered and cardiac-gated gradient echo pulse sequence MRI. Image acquisition was performed during breath-holding, normal breathing, and forced breathing. Normal spinal cord motion values were computed using descriptive statistics. Breathing-dependent differences were assessed using the Wilcoxon signed-rank test and compared with the cardiac-based cord motion.

Results: A normal value table was set up for the spinal cord motion of each vertebral cervico-thoracic-lumbar segment. Significant differences in cord motion were found between cardiac-based motion while breath-holding and the two breathing modalities (P < 0.01 each). Spinal cord motion was found to be highest during forced breathing, with a maximum in the lower cervical spinal segments (C5; mean, 2.1 mm ± 1.17). Image acquisition during breath-holding revealed the lowest motion.

Conclusion: MRI permits the demonstration and evaluation of cardiac and respiration-dependent spinal cord motion within the spinal canal from the cervical to lumbar segments. Breathing conditions have a considerably greater impact than cardiac activity on spinal cord motion.

Key points:

• Cardiac-triggered and ECG-gated MRI allows for demonstration of the smallest spinal cord motions.

• Respiratory influences seem to have the highest impact on spine motion.

• In contrast, the influence of the cardiac cycle seems to be small.

• The smallest spinal cord motions were measured during breath-hold.

Citation Format:

• Winklhofer S, Schoth F, Stolzmann P et al. Spinal Cord Motion: Influence of Respiration and Cardiac Cycle. Fortschr Röntgenstr 2014; 186: 1016 – 1021

Zusammenfassung

Ziel: Ziel der Studie war es, mittels MRT (Magnetresonanztomografie), den Einfluss des Herzzyklus auf die physiologische Rückenmarksbewegung mit dem Einfluss der Atmung zu vergleichen.

Material und Methoden: Bei 16 gesunden, freiwilligen Probanden (Altersemedian 25 Jahre) wurden Rückenmarksbewegungen innerhalb des Spinalkanals mittels Herz-getriggerten und EKG-synchronisierten Gradienten Echo-Puls MRT-Sequenzen untersucht. Die Aufnahmen wurden während Atemanhalten, normalem Atmen und kräftigem Atmen durchgeführt. Normwerte für die Rückenmarksbewegung wurden mittels deskriptiver Statistik berechnet. Atemabhängige Unterschiede wurden mittels des Wilcoxon-Vorzeichen-Rang-Testes ermittelt und mit der Herzzyklus-bedingten Rückenmarksbewegung verglichen.

Ergebnisse: Eine Normwerttabelle für zervikale, thorakale und lumbale Rückenmarksbewegungen auf Höhe eines jeden Wirbelsegmentes wurde erstellt. Signifikante Unterschiede im Ausmaß der Rückenmarksbewegung zeigten sich zwischen den Untersuchungen während des Atemstillstandes (Herzzyklus-bedingten Bewegung) und den beiden atemabhängigen Aufnahmen (jeweils p < 0,01). Die größten Rückenmarksbewegungen wurden während kräftigem Atmen detektiert, mit Höchstwerten auf Höhe der unteren Zervikalsegmente (C5; Mittelwert 2,1 mm ± 1,17). Die Aufnahmen während Atemanhalten ergaben die niedrigsten Werte an Rückenmarksbewegung.

Schlussfolgerung: MRT erlaubt die Darstellung und Beurteilung von herzzyklus-, und atemabhängigen Rückenmarksbewegungen innerhalb des Spinalkanals von zervikalen bis lumbalen Wirbelsegmenten. Atembedingte Einflüsse haben, im Vergleich zu herzzyklus-bedingten Einflüssen, hierbei scheinbar eine deutlich größere Auswirkung auf die Rückenmarksbewegung.

Kernaussagen:

• MRT mit Herz-getriggerten und EKG-synchronisierten Echo-Puls-Sequenzen ermöglicht die Darstellung kleinster Rückenmarksbewegungen.

• Atemabhängige Einflüsse scheinen die größte Auswirkung auf den Bewegungsumfang zu haben.

• Der Einfluss des Herzzyklus auf die Rückenmarksbewegungen scheint dagegen gering zu sein.

• Die geringsten Rückenmarksbewegungen wurden bei Atemanhalten registriert.

 
  • References

  • 1 Seidenwurm DJ, Wippold 2nd FJ et al. ACR Appropriateness Criteria((R)) myelopathy. Journal of the American College of Radiology: JACR 2012; 9: 315-324
  • 2 Haupts M, Haan J, Uhlenbrock D. The myelon in cervical spinal canal stenosis: imaging by X-ray and MRI. Neurosurgical review 1987; 10: 123-125
  • 3 Madi S, Flanders AE, Vinitski S et al. Functional MR imaging of the human cervical spinal cord. AJNR American journal of neuroradiology 2001; 22: 1768-1774
  • 4 Ellingson BM, Ulmer JL, Kurpad SN et al. Diffusion tensor MR imaging of the neurologically intact human spinal cord. AJNR American journal of neuroradiology 2008; 29: 1279-1284
  • 5 Rossi C, Boss A, Lindig TM et al. Diffusion tensor imaging of the spinal cord at 1.5 and 3.0 Tesla. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 2007; 179: 219-224
  • 6 Jokich PM, Rubin JM, Dohrmann GJ. Intraoperative ultrasonic evaluation of spinal cord motion. Journal of neurosurgery 1984; 60: 707-711
  • 7 Levy LM, Di Chiro G, McCullough DC et al. Fixed spinal cord: diagnosis with MR imaging. Radiology 1988; 169: 773-778
  • 8 Cai J, Sheng K, Sheehan JP et al. Evaluation of thoracic spinal cord motion using dynamic MRI. Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology 2007; 84: 279-282
  • 9 Schaller B, Graf R. Different compartments of intracranial pressure and its relationship to cerebral blood flow. The Journal of trauma 2005; 59: 1521-1531
  • 10 Schroth G, Klose U. Cerebrospinal fluid flow. I. Physiology of cardiac-related pulsation. Neuroradiology 1992; 35: 1-9
  • 11 Greitz D, Wirestam R, Franck A et al. Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology 1992; 34: 370-380
  • 12 Gideon P, Thomsen C, Stahlberg F et al. Cerebrospinal fluid production and dynamics in normal aging: a MRI phase-mapping study. Acta neurologica Scandinavica 1994; 89: 362-366
  • 13 Kharbanda HS, Alsop DC, Anderson AW et al. Effects of cord motion on diffusion imaging of the spinal cord. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2006; 56: 334-339
  • 14 Brooks JC, Beckmann CF, Miller KL et al. Physiological noise modelling for spinal functional magnetic resonance imaging studies. NeuroImage 2008; 39: 680-692
  • 15 Kong Y, Jenkinson M, Andersson J et al. Assessment of physiological noise modelling methods for functional imaging of the spinal cord. NeuroImage 2012; 60: 1538-1549
  • 16 Figley CR, Stroman PW. Development and validation of retrospective spinal cord motion time-course estimates (RESPITE) for spin-echo spinal fMRI: Improved sensitivity and specificity by means of a motion-compensating general linear model analysis. NeuroImage 2009; 44: 421-427
  • 17 Spuentrup E, Buecker A, Koelker C et al. Respiratory motion artifact suppression in diffusion-weighted MR imaging of the spine. European radiology 2003; 13: 330-336
  • 18 Figley CR, Yau D, Stroman PW. Attenuation of lower-thoracic, lumbar, and sacral spinal cord motion: implications for imaging human spinal cord structure and function. AJNR American journal of neuroradiology 2008; 29: 1450-1454
  • 19 Figley CR, Stroman PW. Investigation of human cervical and upper thoracic spinal cord motion: implications for imaging spinal cord structure and function. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2007; 58: 185-189
  • 20 Matsuzaki H, Wakabayashi K, Ishihara K et al. The origin and significance of spinal cord pulsation. Spinal cord 1996; 34: 422-426
  • 21 Mikulis DJ, Wood ML, Zerdoner OA et al. Oscillatory motion of the normal cervical spinal cord. Radiology 1994; 192: 117-121
  • 22 Kilner PJ. Imaging congenital heart disease in adults. The British journal of radiology 2011; 84 Spec No 3: S258-S268
  • 23 Grayburn PA, Weissman NJ, Zamorano JL. Quantitation of mitral regurgitation. Circulation 2012; 126: 2005-2017
  • 24 Gallego J, Benammou S, Vardon G et al. Influence of thoracoabdominal pattern of breathing on respiratory resistance. Respiration physiology 1997; 108: 143-152
  • 25 Plathow C, Zimmermann H, Fink C et al. Influence of different breathing maneuvers on internal and external organ motion: use of fiducial markers in dynamic MRI. International journal of radiation oncology, biology, physics 2005; 62: 238-245
  • 26 Barrett KE, Ganong WF. Ganong's review of medical physiology. 24th ed. New York London: McGraw-Hill Medical; McGraw-Hill distributor; 2012. 1 online resource (ix, 752p.)
  • 27 Lisanti CJ, Douglas DB. Effects of breath-hold and cardiac cycle on the MRI appearance of the aorta and inferior vena cava in t2 abdominal imaging. Am J Roentgenol American journal of roentgenology 2009; 192: 1348-1358
  • 28 Ferrigno M, Hickey DD, Liner MH et al. Cardiac performance in humans during breath holding. Journal of applied physiology 1986; 60: 1871-1877
  • 29 Canny J. A computational approach to edge detection. IEEE transactions on pattern analysis and machine intelligence 1986; 8: 679-698
  • 30 Federal Statistic Office in Germany. Körpermaße nach Altersgruppen. Available at: https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/Gesundheit/GesundheitszustandRelevantesVerhalten/Tabellen/Koerpermasse.html Accessed May 7, 2012.31.
  • 31 Andre JB, Bammer R. Advanced diffusion-weighted magnetic resonance imaging techniques of the human spinal cord. Topics in magnetic resonance imaging: TMRI 2010; 21: 367-378
  • 32 Rossi C, Boss A, Steidle G et al. Water diffusion anisotropy in white and gray matter of the human spinal cord. Journal of magnetic resonance imaging: JMRI 2008; 27: 476-482
  • 33 Feinberg DA, Mark AS. Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging. Radiology 1987; 163: 793-799