RSS-Feed abonnieren
DOI: 10.1055/s-0034-1368197
Plant Extracts of the Family Lauraceae: A Potential Resource for Chemopreventive Agents that Activate the Nuclear Factor-Erythroid 2-Related Factor 2/Antioxidant Response Element Pathway
Publikationsverlauf
received 14. September 2013
revised 13. Januar 2014
accepted 03. Februar 2014
Publikationsdatum:
28. Februar 2014 (online)
Abstract
Cells and tissues counteract insults from exogenous or endogenous carcinogens through the expression of genes encoding antioxidants and phase II detoxifying enzymes regulated by antioxidant response element promoter regions. Nuclear factor-erythroid 2-related factor 2 plays a key role in regulating the antioxidant response elements-target gene expression. Hence, the Nrf2/ARE pathway represents a vital cellular defense mechanism against damage caused by oxidative stress and xenobiotics, and is recognized as a potential molecular target for discovering chemopreventive agents. Using a stable antioxidant response element luciferase reporter cell line derived from human breast cancer MDA-MB-231 cells combined with a 96-well high-throughput screening system, we have identified a series of plant extracts from the family Lauraceae that harbor Nrf2-inducing effects. These extracts, including Litsea garrettii (ZK-08), Cinnamomum chartophyllum (ZK-02), C. mollifolium (ZK-04), C. camphora var. linaloolifera (ZK-05), and C. burmannii (ZK-10), promoted nuclear translocation of Nrf2, enhanced protein expression of Nrf2 and its target genes, and augmented intracellular glutathione levels. Cytoprotective activity of these extracts against two electrophilic toxicants, sodium arsenite and H2O2, was investigated. Treatment of human bronchial epithelial cells with extracts of ZK-02, ZK-05, and ZK-10 significantly improved cell survival in response to sodium arsenite and H2O2, while ZK-08 showed a protective effect against only H2O2. Importantly, their protective effects against insults from both sodium arsenite and H2O2 were Nrf2-dependent. Therefore, our data provide evidence that the selected plants from the family Lauraceae are potential sources for chemopreventive agents targeting the Nrf2/ARE pathway.
-
References
- 1 Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 2003; 3: 768-780
- 2 Jeong WS, Jun M, Kong AN. Nrf2: a potential molecular target for cancer chemoprevention by natural compounds. Antioxid Redox Sign 2006; 8: 99-106
- 3 Moi P, Chan K, Asunis I, Cao A, Kan YW. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A 1994; 91: 9926-9930
- 4 Lau A, Villeneuve NF, Sun Z, Wong PK, Zhang DD. Dual roles of Nrf2 in cancer. Pharmacol Res 2008; 58: 262-270
- 5 Bryan HK, Olayanju A, Goldring CE, Park BK. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 2013; 85: 705-717
- 6 Zhang DD. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 2006; 38: 769-789
- 7 Zheng Y, Tao S, Lian F, Chau BT, Chen J, Sun G, Fang D, Lantz RC, Zhang DD. Sulforaphane prevents pulmonary damage in response to inhaled arsenic by activating the Nrf2-defense response. Toxicol Appl Pharmacol 2012; 265: 292-299
- 8 Iizuka T, Ishii Y, Itoh K, Kiwamoto T, Kimura T, Matsuno Y, Morishima Y, Hegab AE, Homma S, Nomura A. Nrf2-deficient mice are highly susceptible to cigarette smoke‐induced emphysema. Genes Cells 2005; 10: 1113-1125
- 9 Wu KC, Zhang Y, Klaassen CD. Nrf2 protects against diquat-induced liver and lung injury. Free Radic Res 2012; 46: 1220-1229
- 10 Ramos-Gomez M, Kwak MK, Dolan PM, Itoh K, Yamamoto M, Talalay P, Kensler TW. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci U S A 2001; 98: 3410-3415
- 11 Juge N, Mithen R, Traka M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 2007; 64: 1105-1127
- 12 Farombi EO, Shrotriya S, Na HK, Kim SH, Surh YJ. Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food Chem Toxicol 2008; 46: 1279-1287
- 13 Garg R, Gupta S, Maru GB. Dietary curcumin modulates transcriptional regulators of phase I and phase II enzymes in benzo [a] pyrene-treated mice: mechanism of its anti-initiating action. Carcinogenesis 2008; 29: 1022-1032
- 14 Wondrak GT, Villeneuve NF, Lamore SD, Bause AS, Jiang T, Zhang DD. The cinnamon-derived dietary factor cinnamic aldehyde activates the Nrf2-dependent antioxidant response in human epithelial colon cells. Molecules 2010; 15: 3338-3355
- 15 Zheng H, Whitman SA, Wu W, Wondrak GT, Wong PK, Fang D, Zhang DD. Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes 2011; 60: 3055-3066
- 16 Haskó G, Pacher P. Endothelial Nrf2 activation: a new target for resveratrol?. Am J Physiol Heart Circ Physiol 2010; 299: H10-H12
- 17 Na HK, Surh YJ. Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem Toxicol 2008; 46: 1271-1278
- 18 Nakamura Y, Yoshida C, Murakami A, Ohigashi H, Osawa T, Uchida K. Zerumbone, a tropical ginger sesquiterpene, activates phase II drug metabolizing enzymes. FEBS Lett 2004; 572: 245-250
- 19 Ben-Dor A, Steiner M, Gheber L, Danilenko M, Dubi N, Linnewiel K, Zick A, Sharoni Y, Levy J. Carotenoids activate the antioxidant response element transcription system. Mol Cancer Ther 2005; 4: 177-186
- 20 Martin D, Rojo AI, Salinas M, Diaz R, Gallardo G, Alam J, de Galarreta CMR, Cuadrado A. Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem 2004; 279: 8919-8929
- 21 Tanigawa S, Fujii M, Hou DX. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic Biol Med 2007; 42: 1690-1703
- 22 Chen HH, Chen YT, Huang YW, Tsai HJ, Kuo CC. 4-Ketopinoresinol, a novel naturally occurring ARE activator, induces the Nrf2/HO-1 axis and protects against oxidative stress-induced cell injury via activation of PI3K/AKT signaling. Free Radic Biol Med 2012; 52: 1054-1066
- 23 Hu Q, Zhang DD, Wang L, Lou H, Ren D. Eriodictyol-7-O-glucoside, a novel Nrf2 activator, confers protection against cisplatin-induced toxicity. Food Chem Toxicol 2012; 50: 1927-1932
- 24 Izumi Y, Matsumura A, Wakita S, Akagi K, Fukuda H, Kume T, Irie K, Takada-Takatori Y, Sugimoto H, Hashimoto T. Isolation, identification, and biological evaluation of Nrf2-ARE activator from the leaves of green perilla (Perilla frutescens var. crispa f. viridis). Free Radic Biol Med 2012; 53: 669-679
- 25 Saw CL, Yang AY, Cheng DC, Boyanapalli SS, Su ZY, Khor TO, Gao S, Wang J, Jiang ZH, Kong AN. Pharmacodynamics of ginsenosides: antioxidant activities, activation of Nrf2, and potential synergistic effects of combinations. Chem Res Toxicol 2012; 25: 1574-1580
- 26 Fischedick JT, Standiford M, Johnson DA, De Vos RC, Todorović S, Banjanac T, Verpoorte R, Johnson JA. Activation of antioxidant response element in mouse primary cortical cultures with sesquiterpene lactones isolated from Tanacetum parthenium . Planta Med 2012; 78: 1725-1730
- 27 Miura T, Shinkai Y, Jiang HY, Iwamoto N, Sumi D, Taguchi K, Yamamoto M, Jinno H, Tanaka-Kagawa T, Cho AK. Initial response and cellular protection through the Keap1/Nrf2 system during the exposure of primary mouse hepatocytes to 1, 2-naphthoquinone. Chem Res Toxicol 2011; 24: 559-567
- 28 Wondrak GT, Cabello CM, Villeneuve NF, Zhang S, Ley S, Li Y, Sun Z, Zhang DD. Cinnamoyl-based Nrf2-activators targeting human skin cell photo-oxidative stress. Free Radic Biol Med 2008; 45: 385-395
- 29 Dewick PM. Medicinal natural products: a biosynthetic approach. 2nd. edition. Chichester: John Wiley & Sons; 2011
- 30 Du Y, Villeneuve NF, Wang XJ, Sun Z, Chen W, Li J, Lou H, Wong PK, Zhang DD. Oridonin confers protection against arsenic-induced toxicity through activation of the Nrf2-mediated defensive response. Environ Health Perspect 2008; 116: 1154-1161
- 31 Harvey C, Thimmulappa R, Singh A, Blake D, Ling G, Wakabayashi N, Fujii J, Myers A, Biswal S. Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic Biol Med 2009; 46: 443-453
- 32 Mehta RG, Murillo G, Naithani R, Peng X. Cancer chemoprevention by natural products: how far have we come?. Pharm Res 2010; 27: 950-961
- 33 Talalay P, De Long M, Prochaska HJ. Molecular mechanisms in protection against carcinogenesis. New York: Plenum Press; 1987
- 34 Tao S, Zheng Y, Lau A, Jaramillo MC, Chau BT, Lantz RC, Wong PK, Wondrak GT, Zhang DD. Tanshinone I activates the Nrf2-dependent antioxidant response and protects against As(III)-induced lung inflammation in vitro and in vivo . Antioxid Redox Signal 2013; 19: 1647-1661
- 35 Chew EH, Nagle AA, Zhang Y, Scarmagnani S, Palaniappan P, Bradshaw TD, Holmgren A, Westwell AD. Cinnamaldehydes inhibit thioredoxin reductase and induce Nrf2: potential candidates for cancer therapy and chemoprevention. Free Radic Biol Med 2010; 48: 98-111
- 36 Haan JB. Nrf2 activators as attractive therapeutics for diabetic nephropathy. Diabetes 2011; 60: 2683-2684
- 37 The Combined Chemical Dictionary. Boca Raton: Chapman and Hall/CRC Press. Online database available at:. http://www.chemnetbase.com/ Accessed May, 2013.
- 38 Dickinson DA, Forman HJ. Cellular glutathione and thiols metabolism. Biochem Pharmacol 2002; 64: 1019-1026
- 39 Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 2010; 48: 749-762
- 40 Huang C, Ke Q, Costa M, Shi X. Molecular mechanisms of arsenic carcinogenesis. Mol Cell Biochem 2004; 255: 57-66
- 41 Shi H, Shi X, Liu KJ. Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 2004; 255: 67-78
- 42 Barchowsky A, Dudek EJ, Treadwell MD, Wetterhahn KE. Arsenic induces oxidant stress and NF-kB activation in cultured aortic endothelial cells. Free Radic Biol Med 1996; 21: 783-790
- 43 Lynn S, Gurr JR, Lai HT, Jan KY. NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells. Circ Res 2000; 86: 514-519
- 44 Liu F, Jan KY. DNA damage in arsenite-and cadmium-treated bovine aortic endothelial cells. Free Radic Biol Med 2000; 28: 55-63
- 45 Barchowsky A, Klei LR, Dudek EJ, Swartz HM, James PE. Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite. Free Radic Biol Med 1999; 27: 1405-1412
- 46 Jiang T, Huang Z, Chan JY, Zhang DD. Nrf2 protects against As(III)-induced damage in mouse liver and bladder. Toxicol Appl Pharmacol 2009; 240: 8-14
- 47 Wang XJ, Sun Z, Chen W, Eblin KE, Gandolfi JA, Zhang DD. Nrf2 protects human bladder urothelial cells from arsenite and monomethylarsonous acid toxicity. Toxicol Appl Pharmacol 2007; 225: 206-213
- 48 Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 2001; 31: 1287-1312
- 49 Waris G, Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 2006; 5: 14-21
- 50 Nishigori C, Hattori Y, Toyokuni S. Role of reactive oxygen species in skin carcinogenesis. Antioxid Redox Signal 2004; 6: 561-570
- 51 Zhu H, Itoh K, Yamamoto M, Zweier JL, Li Y. Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett 2005; 579: 3029-3036
- 52 Frohlich D, McCabe M, Arnold R, Day M. The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis. Oncogene 2008; 27: 4353-4362
- 53 Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 2013; 53: 401-426
- 54 Chartoumpekis D, Ziros PG, Psyrogiannis A, Kyriazopoulou V, Papavassiliou AG, Habeos IG. Simvastatin lowers reactive oxygen species level by Nrf2 activation via PI3K/Akt pathway. Biochem Biophys Res Commun 2010; 396: 463-466