RSS-Feed abonnieren
DOI: 10.1055/s-0034-1368354
Lipase Inhibition and Antiobesity Effect of Atractylodes lancea
Publikationsverlauf
received 17. Dezember 2013
revised 06. März 2014
accepted 10. März 2014
Publikationsdatum:
31. März 2014 (online)
Abstract
The ethanol extract of Atractylodes lancea rhizome displayed significant lipase inhibition with an IC50 value of 9.06 µg/mL in a human pancreatic lipase assay from high-throughput screening. Bioassay-guided isolation led to the identification of one new polyacetylene, syn-(5E,11E)-3-acetoxy-4-O-(3-methylbutanoyl)-1,5,11-tridecatriene-7,9-diyne-3,4-diol (7), along with six known compounds (1–6). The structure of compound 7 was determined based on the analysis of NMR and MS data. Among these seven lipase inhibitors, the major compound atractylodin (1) showed the highest lipase inhibitory activity (IC50 = 39.12 µM). The antiobesity effect of the ethanol extract of Atractylodes lancea rhizome was evaluated in a high-fat diet-induced obesity mice model at daily dosages of 250 mg/kg and 500 mg/kg body weight for 4 weeks, and treatment with this extract demonstrated a moderate efficacy at the 500 mg/kg dose level.
Key words
Atractylodes lancea - Asteraceae - pancreatic lipase - lipase inhibitor - atractylodin - polyacetylenes - DIO mice-
References
- 1 Kopelman PG. Obesity as a medical problem. Nature 2000; 404: 635-643
- 2 Cooke D, Bloom S. The obesity pipeline: current strategies in the development of anti-obesity drugs. Nat Rev Drug Discov 2006; 5: 919-931
- 3 World Health Organization. Obesity. Available at http://www.who.int/topics/obesity/en/ Accessed October 10, 2013.
- 4 Tucci SA, Boyland EJ, Halford JC. The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: a review of current and emerging therapeutic agents. Diabetes Metab Syndr Obes 2010; 3: 125-143
- 5 Shi Y, Burn P. Lipid metabolic enzymes: emerging drug targets for the treatment of obesity. Nat Rev Drug Discov 2004; 3: 695-710
- 6 Birari RB, Bhutani KK. Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today 2007; 12: 879-889
- 7 Borgström B. Mode of action of tetrahydrolipstatin: a derivative of the naturally occurring lipase inhibitor lipstatin. Biochim Biophys Acta 1988; 962: 308-316
- 8 Weibel EK, Hadvary P, Hochuli E, Kupfer E, Lengsfeld H. Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. I. Producing organism, fermentation, isolation and biological activity. J Antibiot 1987; 40: 1081-1085
- 9 Li F, Li W, Fu H, Zhang Q, Koike K. Pancreatic lipase-inhibiting triterpenoid saponins from fruits of Acanthopanax senticosus . Chem Pharm Bull 2007; 55: 1087-1089
- 10 Sharma N, Sharma VK, Seo SY. Screening of some medicinal plants for anti-lipase activity. J Ethnopharmacol 2005; 97: 453-456
- 11 Kim HY, Kang MH. Screening of Korean medicinal plants for lipase inhibitory activity. Phytother Res 2005; 19: 359-361
- 12 Zheng CD, Duan YQ, Gao JM, Ruan ZG. Screening for anti-lipase properties of 37 traditional Chinese medicinal herbs. J Chin Med Assoc 2010; 73: 319-324
- 13 Sun XY, Sun FY. Shen Nong Ben Cao Jing, 4th edition. Beijing: Shang Wu Yin Shu Guan; 1959: 13
- 14 Gruenwald J. PDR for herbal medicines. 2nd. edition. Montvale: Thomson Physicianʼs Desk Reference, Inc.; 2000: 706-707
- 15 Yoshioka I, Hikino H, Sasaki Y. The constituents of Atractylodes. VII. The structure of atractylodin. 2. The chromophores. Chem Pharm Bull 1960; 8: 952-956
- 16 Yoshioka I, Hikino H, Sasaki Y. Studies on the constituents of Atractylodes. VI. The structure of atractylodin. 1. The skeleton. Chem Pharm Bull 1960; 8: 949-951
- 17 Lehner MS, Steigel A, Bauer R. Diacetoxy-substituted polyacetylenes from Atractylodes lancea . Phytochemistry 1997; 46: 1023-1028
- 18 Resch M, Heilmann J, Steigel A, Bauer R. Further phenols and polyacetylenes from the rhizomes of Atractylodes lancea and their anti-inflammatory activity. Planta Medica 2001; 67: 437-442
- 19 Kano Y, Komatsu K, Saito K, Bando H, Sakurai T. A new polyacetylene compound from Atractylodes rhizome. Chem Pharm Bull 1989; 37: 193-194
- 20 Dong H, He L, Huang M, Dong Y. Anti-inflammatory components isolated from Atractylodes macrocephala Koidz. Nat Prod Res 2008; 22: 1418-1427
- 21 Nakai Y, Sakakibara I, Hirakura K, Terabayashi S, Takeda S. A new acetylenic compound from the rhizomes of Atractylodes chinensis and its absolute configuration. Chem Pharm Bull 2005; 53: 1580-1581
- 22 Wang HY, Guo YW, Wang T, Cai YS, Sun P. Enyne bromide compounds as pancreatic lipase inhibitor and their preparation. Faming Zhuanli Shenqing. China Patent CN102850208 A20130102 2013
- 23 Bitou N, Ninomiya M, Tsujita T, Okuda H. Screening of lipase inhibitors from marine algae. Lipids 1999; 34: 441-445