Geburtshilfe Frauenheilkd 2014; 74(7): 639-645
DOI: 10.1055/s-0034-1368486
Review
GebFra Science
Georg Thieme Verlag KG Stuttgart · New York

Overweight and Obesity before, during and after Pregnancy

Part 1: Pathophysiology, Molecular Biology and Epigenetic ConsequencesÜbergewicht und Adipositas in der PeripartualperiodeTeil 1: Pathophysiologische und molekularbiologische Aspekte von Übergewicht und Adipositas sowie deren epigenetische Konsequenzen für künftige Generationen
J. H. Stupin
1   Clara Angela Foundation, Witten, Berlin
2   Clinic of Obstetrics, Charité-Universitätsmedizin Berlin, Berlin
,
B. Arabin
1   Clara Angela Foundation, Witten, Berlin
2   Clinic of Obstetrics, Charité-Universitätsmedizin Berlin, Berlin
3   Centre for Mother and Child, Phillips-Universität Marburg, Marburg
› Author Affiliations
Further Information

Publication History

received 12 March 2014
revised 16 April 2014

accepted 16 April 2014

Publication Date:
01 August 2014 (online)

Abstract

Overweight and obesity before conception as well as excessive weight gain during pregnancy are associated with endocrinological changes of mother and fetus. Insulin resistance physiologically increases during pregnancy, additional obesity further increases insulin resistance. In combination with reduced insulin secretion this leads to gestational diabetes which may develop into type-2-diabetes. The adipose tissue produces TNF-alpha, interleukins and leptin and upregulates these adipokines. Insulin resistance and obesity induce inflammatory processes and vascular dysfunction, which explains the increased rate of pregnancy-related hypertension and pre-eclampsia in obese pregnant women. Between 14 and 28 gestational weeks, the fetal adipose tissue is generated and the number of fat lobules is determined. Thereafter, an increase in adipose tissue is arranged by an enlargement of the lobules (hypertrophy), or even an increase in the number of fat cells (hyperplasia). Human and animal studies have shown that maternal obesity “programmes” the offspring for further obesity and chronic disease. Pregnant women, midwives, physicians and health care politicians should be better informed about prevention, pathophysiological mechanisms, and the burden for society caused by obesity before, during and after pregnancy.

Zusammenfassung

Übergewicht und Adipositas vor der Konzeption sowie überhöhte Gewichtszunahme während der Schwangerschaft sind mit einer Reihe von Veränderungen des endokrinen Systems von Mutter und Kind verbunden. In der Schwangerschaft steigt die Insulinresistenz ohnehin, bei zusätzlicher Adipositas wird eine schon vorhandene Insulinresistenz verstärkt. Zusammen mit einer verminderten Insulinsekretion führt dies zu einem Gestationsdiabetes, der in einen manifesten Typ-2-Diabetes mellitus konvertieren kann. Das Fettgewebe produziert TNF-alpha, Interleukine und Leptin und sorgt für eine Hochregulierung dieser Adipokine. Insulinresistenz und Adipositas sind mit inflammatorischen Prozessen und vaskulärer Dysfunktion assoziiert, die auch die erhöhte Rate von schwangerschaftsassoziiertem Hypertonus und Präeklampsie adipöser Schwangerer erklärt. Beim Feten entsteht Fettgewebe zwischen den Schwangerschaftswochen 14 und 28. In dieser Zeitspanne wird die Zahl der Fettlobulae festgelegt. Eine spätere Zunahme des Fettgewebes erfolgt durch Vergrößerung der Läppchen (Hypertrophie). Bei Entwicklung einer Adipositas kann es jedoch auch zu einer Zunahme der Zahl der Fettzellen (Hyperplasie) kommen. Studien an Mensch und Tier haben gezeigt, dass mütterliche Adipositas die Nachkommenschaft bereits in der Schwangerschaft für Adipositas und chronische Erkrankungen „programmiert“. Hierüber sollten nicht nur die betroffenen Mütter, sondern auch Hebammen, Ärzte und Gesundheitspolitiker informiert sein, um Risiken zu verhindern und die damit verbundenen Kosten zu limitieren.

 
  • Literatur

  • 1 Max Rubner-Institut. Nationale Verzehrsstudie II. Ergebnisbericht, Teil 1. 2008. Online: http://www.mri.bund.de last access: 20.01.2014
  • 2 Abbasi F, Brown jr. BW, Lamendola C et al. Relationship between obesity, insulin resistance, and coronary heart disease risk. J Am Coll Cardiol 2002; 40: 937-943
  • 3 McLaughlin T, Allison G, Abbasi F et al. Prevalence of insulin resistance and associated cardiovascular disease risk factors among normal weight, overweight, and obese individuals. Metabolism 2004; 53: 495-499
  • 4 Catalano PM, Tyzbir ED, Roman NM et al. Longitudinal changes in insulin release and insulin resistance in nonobese pregnant women. Am J Obstet Gynecol 1991; 165 (6 Pt 1) 1667-1672
  • 5 Catalano PM, Huston L, Amini SB et al. Longitudinal changes in glucose metabolism during pregnancy in obese women with normal glucose tolerance and gestational diabetes mellitus. Am J Obstet Gynecol 1999; 180: 903-916
  • 6 Athukorala C, Rumbold AR, Willson KJ et al. The risk of adverse pregnancy outcomes in women who are overweight or obese. BMC Pregnancy Childbirth 2010; 10: 56
  • 7 Ovesen P, Rassmussen S, Kesmodel U. Effect of prepregnancy overweight and obesity on pregnancy outcome. Obstet Gynecol 2011; 118 (2 Pt 1) 305-312
  • 8 Weiss JL, Malone FD, Emig D et al. FASTER Research Consortium. Obesity, obstetric complications and cesarean delivery rate – a population-based screening study. Am J Obstet Gynecol 2004; 190: 1091-1097
  • 9 Torloni MR, Betran AP, Horta BL et al. Prepregnancy BMI and the risk of gestational diabetes: a systematic review of the literature with meta-analysis. Obes Rev 2009; 10: 194-203
  • 10 Challis JR, Lockwood CJ, Myatt L et al. Inflammation and pregnancy. Reprod Sci 2009; 16: 206-215
  • 11 Wang Z, Nakayama T. Inflammation, a link between obesity and cardiovascular disease. Mediators Inflamm 2010; 2010: 535918
  • 12 Mangge H, Almer G, Truschnig-Wilders M et al. Inflammation, adiponectin, obesity and cardiovascular risk. Curr Med Chem 2010; 17: 4511-4520
  • 13 Ramsay JE, Ferrell WR, Crawford L et al. Maternal obesity is associated with dysregulation of metabolic, vascular, and inflammatory pathways. J Clin Endocrinol Metab 2002; 87: 4231-4237
  • 14 Roberts JM, Bodnar LM, Patrick TE et al. The role of obesity in preeclampsia. Pregnancy Hypertens 2011; 1: 6-16
  • 15 Zhang Y, Proenca R, Maffei M et al. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425-432
  • 16 Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Clin Endocrinol (Oxf) 2006; 64: 355-365
  • 17 Fischer-Posovszky P, Wabitsch M, Hochberg Z. Endocrinology of adipose tissue - an update. Horm Metab Res 2007; 39: 314-321
  • 18 Gelsinger C, Tschoner A, Kaser S et al. [Adipokine update – new molecules, new functions]. Wien Med Wochenschr 2010; 160: 377-390
  • 19 Denison FC, Roberts KA, Barr SM et al. Obesity, pregnancy, inflammation, and vascular function. Reproduction 2010; 140: 373-385
  • 20 Catalano PM. Trying to understand gestational diabetes. Diabet Med 2014; 31: 273-281
  • 21 Poissonnet CM, Burdi AR, Bookstein FL. Growth and development of human adipose tissue during early gestation. Early Hum Dev 1983; 8: 1-11
  • 22 Martin RJ, Hausman GJ, Hausman DB. Regulation of adipose cell development in utero. Proc Soc Exp Biol Med 1998; 219: 200-210
  • 23 Poissonnet CM, Burdi AR, Garn SM. The chronology of adipose tissue appearance and distribution in the human fetus. Early Hum Dev 1984; 10: 1-11
  • 24 Knittle JL, Timmers K, Ginsberg-Fellner F et al. The growth of adipose tissue in children and adolescents. Cross-sectional and longitudinal studies of adipose cell number and size. J Clin Invest 1979; 63: 239-246
  • 25 Spalding KL, Arner E, Westermark PO et al. Dynamics of fat cell turnover in humans. Nature 2008; 453: 783-787
  • 26 Cinti S. Transdifferentiation properties of adipocytes in the adipose organ. Am J Physiol Endocrinol Metab 2009; 297: E977-E986
  • 27 Després JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 2006; 444: 881-887
  • 28 Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993; 259: 87-91
  • 29 Lago F, Dieguez C, Gómez-Reino J et al. The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine Growth Factor Rev 2007; 18: 313-325
  • 30 Maury E, Brichard SM. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol 2010; 314: 1-16
  • 31 Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 1996; 271: 10697-10703
  • 32 Milan G, Granzotto M, Scarda A et al. Resistin and adiponectin expression in visceral fat of obese rats: effect of weight loss. Obes Res 2002; 10: 1095-1103
  • 33 Huber J, Kiefer FW, Zeyda M et al. CC chemokine and CC chemokine receptor profiles in visceral and subcutaneous adipose tissue are altered in human obesity. J Clin Endocrinol Metab 2008; 93: 3215-3221
  • 34 Fain JN, Madan AK, Hiler ML et al. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 2004; 145: 2273-2282
  • 35 Demerath EW, Reed D, Rogers N et al. Visceral adiposity and its anatomical distribution as predictors of the metabolic syndrome and cardiometabolic risk factor levels. Am J Clin Nutr 2008; 88: 1263-1271
  • 36 Tordjman J, Poitou C, Hugol D et al. Association between omental adipose tissue macrophages and liver histopathology in morbid obesity: influence of glycemic status. J Hepatol 2009; 51: 354-362
  • 37 Apovian CM, Bigornia S, Mott M et al. Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler Thromb Vasc Biol 2008; 28: 1654-1659
  • 38 Poulain-Godefroy O, Lecoeur C, Pattou F et al. Inflammation is associated with a decrease of lipogenic factors in omental fat in women. Am J Physiol Regul Integr Comp Physiol 2008; 295: R1-R7
  • 39 Staiger H, Häring HU. Adipocytokines: fat-derived humoral mediators of metabolic homeostasis. Exp Clin Endocrinol Diabetes 2005; 113: 67-79
  • 40 Radaelli T, Varastehpour A, Catalano P et al. Gestational diabetes induces placental genes for chronic stress and inflammatory pathways. Diabetes 2003; 52: 2951-2958
  • 41 Hauguel-de Mouzon S, Guerre-Millo M. The placenta cytokine network and inflammatory signals. Placenta 2006; 27: 794-798
  • 42 Challier JC, Basu S, Bintein T et al. Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta 2008; 29: 274-281
  • 43 Basu S, Leahy P, Challier JC et al. Molecular phenotype of monocytes at the maternal-fetal interface. Am J Obstet Gynecol 2011; 205: 265.e1-265.e8
  • 44 Xu H, Barnes GT, Yang Q et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112: 1821-1830
  • 45 Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006; 444: 860-867
  • 46 Farley D, Tejero ME, Comuzzie AG et al. Feto-placental adaptations to maternal obesity in the baboon. Placenta 2009; 30: 752-760
  • 47 Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007; 117: 175-184
  • 48 Martin AM, Berger H, Nisenbaum R et al. Abdominal visceral adiposity in the first trimester predicts glucose intolerance in later pregnancy. Diabetes Care 2009; 32: 1308-1310
  • 49 Kirwan JP, Hauguel-De Mouzon S, Lepercq J et al. TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes 2002; 51: 2207-2213
  • 50 Colomiere M, Permezel M, Riley C et al. Defective insulin signaling in placenta from pregnancies complicated by gestational diabetes mellitus. Eur J Endocrinol 2009; 160: 567-578
  • 51 Metzger BE, Lowe LP, Dyer AR et al. HAPO Study Cooperative Research Group. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 2008; 358: 1991-2002
  • 52 Boomsma CM, Eijkemans MJ, Hughes EG et al. A meta-analysis of pregnancy outcomes in women with polycystic ovary syndrome. Hum Reprod Update 2006; 12: 673-683
  • 53 Bodnar LM, Ness RB, Harger GF et al. Inflammation and triglycerides partially mediate the effect of prepregnancy body mass index on the risk of preeclampsia. Am J Epidemiol 2005; 162: 1198-1206
  • 54 Plagemann A. ‘Fetal programming and ʼfunctional teratogenesisʼ: on epigenetic mechanisms and prevention of perinatally acquired lasting health risks. J Perinat Med 2004; 32: 297-305
  • 55 Catalano PM, Hauguel-De Mouzon S. Is it time to revisit the Pedersen hypothesis in the face of the obesity epidemic?. Am J Obstet Gynecol 2011; 204: 479-487
  • 56 Plagemann A, Harder T, Schellong K et al. Early postnatal life as a critical time window for determination of long-term metabolic health. Best Pract Res Clin Endocrinol Metab 2012; 26: 641-653
  • 57 Pinney SE, Simmons RA. Metabolic programming, epigenetics, and gestational diabetes mellitus. Curr Diab Rep 2012; 12: 67-74
  • 58 Plagemann A. Toward a unifying Concept on perinatal Programming: vegetative Imprinting by Environment-dependent Biocybernetogenesis. In: Plagemann A, ed. Perinatal Programming. The State of the Art. Berlin, Boston: de Gruyter; 2012: 243-282
  • 59 Ruchat SM, Hivert MF, Bouchard L. Epigenetic programming of obesity and diabetes by in utero exposure to gestational diabetes mellitus. Nutr Rev 2013; 71 (Suppl. 01) S88-S94
  • 60 Plagemann A. Perinatal programming and functional teratogenesis: impact on body weight regulation and obesity. Physiol Behav 2005; 86: 661-668
  • 61 Plagemann A, Harder T, Dudenhausen JW. The diabetic pregnancy, macrosomia, and perinatal nutritional programming. Nestle Nutr Workshop Ser Pediatr Program 2008; 61: 91-102
  • 62 Harder T, Rodekamp E, Schellong K et al. Adipositas und perinatale Programmierung. In: Plagemann A, Dudenhausen JW, Hrsg. Adipositas als Risiko in der Perinatalmedizin. München: Springer; 2010: 72-81
  • 63 Plagemann A. Maternal diabetes and perinatal programming. Early Hum Dev 2011; 87: 743-747
  • 64 Plagemann A, Harder T. Fuel-mediated teratogenesis and breastfeeding. Diabetes Care 2011; 34: 779-781
  • 65 Stupin JH, Harder T, Plagemann A. [Fetal programming during diabetic pregnancy.]. Adipositas 2011; 5: 134-140
  • 66 Dörner G, Mohnike A. Further evidence for a predominantly maternal transmission of maturity-onset type diabetes. Endokrinologie 1976; 68: 121-124
  • 67 Dörner G. Perinatal Hormone Levels and Brain Organization. In: Stumpf W, Grant LD, eds. Anatomical Neuroendocrinology. Basel: Karger; 1975: 245-252
  • 68 Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992; 35: 595-601
  • 69 Bergmann RL, Richter R, Bergmann KE et al. Secular trends in neonatal macrosomia in Berlin: influences of potential determinants. Paediatr Perinat Epidemiol 2003; 17: 244-249
  • 70 Harder T, Plagemann A. The intrauterine environmental adipogenesis. J Pediatr 2004; 144: 551-552
  • 71 Hesse V, Voigt M, Sälzler A et al. Alterations in height, weight, and body mass index of newborns, children, and young adults in eastern Germany after German reunification. J Pediatr 2003; 142: 259-262
  • 72 Sewell MF, Huston-Presley L, Super DM et al. Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. Am J Obstet Gynecol 2006; 195: 1100-1103
  • 73 Cedergren MI. Maternal morbid obesity and the risk of adverse pregnancy outcome. Obstet Gynecol 2004; 103: 219-224
  • 74 Mission JF, Marshall NE, Caughey AB. Obesity in pregnancy: a big problem and getting bigger. Obstet Gynecol Surv 2013; 68: 389-399
  • 75 Galtier-Dereure F, Boegner C, Bringer J. Obesity and pregnancy: complications and cost. Am J Clin Nutr 2000; 71 (5 Suppl.) 1242S-1248S
  • 76 Helms E, Coulson CC, Galvin SL. Trends in weight gain during pregnancy: a population study across 16 years in North Carolina. J Obstet Gynecol 2006; 194: e32-e34
  • 77 Harder T, Schellong K, Stupin J et al. Where is the evidence that low birthweight leads to obesity?. Lancet 2007; 369: 1859
  • 78 Schellong K, Schulz S, Harder T et al. Birth weight and long-term overweight risk: systematic review and a meta-analysis including 643,902 persons from 66 studies and 26 countries globally. PLoS One 2012; 7: e47776
  • 79 Harder T, Rodekamp E, Schellong K et al. Birth weight and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol 2007; 165: 849-857
  • 80 Dabelea D, Hanson RL, Lindsay RS et al. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes 2000; 49: 2208-2211
  • 81 Pettitt DJ, Baird HR, Aleck KA et al. Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy. N Engl J Med 1983; 308: 242-245
  • 82 Plagemann A, Harder T, Kohlhoff R et al. Overweight and obesity in infants of mothers with long-term insulin-dependent diabetes or gestational diabetes. Int J Obes Relat Metab Disord 1997; 21: 451-456
  • 83 Plagemann A, Harder T, Kohlhoff R et al. Glucose tolerance and insulin secretion in children of mothers with pregestational IDDM or gestational diabetes. Diabetologia 1997; 40: 1094-1100
  • 84 Silverman BL, Rizzo T, Green OC et al. Long-term prospective evaluation of offspring of diabetic mothers. Diabetes 1991; 40 (Suppl. 02) 121-125
  • 85 Prince A, Ma J, Bader D et al. Maternal diet persistently alters the developing juvenile microbiome in a primate model of obesity (abstract). Am J Obstet Gynecol 2014; 210 (Suppl. 01) S30
  • 86 Seet E, Yee J, Ross M et al. Programmed adipogenesis and obesity in offspring of obese dams (abstract). Am J Obstet Gynecol 2014; 210 (Suppl. 01) S33
  • 87 Bytautiene E, Kechichian T, Syes T et al. Accelerated aging in the offspring of mothers with pre-pregnancy obesity in a mouse model of developmental programming of metabolic syndrome (abstract). Am J Obstet Gynecol 2014; 210 (Suppl. 01) S30-S31
  • 88 Bytautiene E, Banerjee D, Kechichian T et al. Adipose tissue dysfunction in a model of developmental programming of metabolic syndrome. Am J Obstet Gynecol 2014; 210 (Suppl. 01) S97
  • 89 Dörner G, Plagemann A. Perinatal hyperinsulinism as possible predisposing factor for diabetes mellitus, obesity and enhanced cardiovascular risk in later life. Horm Metab Res 1994; 26: 213-221
  • 90 Plagemann A, Harder T, Brunn M et al. Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol 2009; 587 (Pt 20) 4963-4976
  • 91 Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16: 6-21
  • 92 Heijmans BT, Tobi EW, Stein AD et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 2008; 105: 17046-17049
  • 93 Bouchard L, Thibault S, Guay SP et al. Leptin gene epigenetic adaptation to impaired glucose metabolism during pregnancy. Diabetes Care 2010; 33: 2436-2441
  • 94 Tobi EW, Heijmans BT, Kremer D et al. DNA methylation of IGF2, GNASAS, INSIGF and LEP and being born small for gestational age. Epigenetics 2011; 6: 171-176
  • 95 Filiberto AC, Maccani MA, Koestler D et al. Birthweight is associated with DNA promoter methylation of the glucocorticoid receptor in human placenta. Epigenetics 2011; 6: 566-572
  • 96 Bouchard L, Hivert MF, Guay SP et al. Placental adiponectin gene DNA methylation levels are associated with mothersʼ blood glucose concentration. Diabetes 2012; 61: 1272-1280
  • 97 Nomura Y, Lambertini L, Rialdi A et al. Global methylation in the placenta and umbilical cord blood from pregnancies with maternal gestational diabetes, preeclampsia, and obesity. Reprod Sci 2014; 21: 131-137
  • 98 Ghaffari N, Parry S, Durnwald C. The role of miRNA in fetal programming of obesity. Am J Obstet Gynecol 2014; 210 (Suppl. 01) S70
  • 99 Nathanielsz PW, Ford SP, Long NM et al. Interventions to prevent adverse fetal programming due to maternal obesity during pregnancy. Nutr Rev 2013; 71 (Suppl. 01) S78-S87
  • 100 Institute of Medicine (IOM). Weight Gain during Pregnancy: re-examining the Guidelines. Committee to Reexamine IOM Pregnancy Weight Guidelines. Washington: National Research Council; 2009