Subscribe to RSS
DOI: 10.1055/s-0034-1368566
Zuverlässiger UV-Schutz durch Intraokularlinsen – Rationale und Qualitätsanforderungen
Reliable UV-Light Protection in Intraocular Lenses – Scientific Rationale and Quality RequirementsPublication History
eingereicht 05 March 2014
akzeptiert 28 April 2014
Publication Date:
03 July 2014 (online)
Zusammenfassung
Seit etwa Ende der 80er-Jahre des letzten Jahrhunderts gilt die Implantation von UV-Blockerlinsen nach Kataraktextraktion als international anerkannter therapeutischer Standard. Im letzten Jahr haben die Kassenärztliche Vereinigung Bayern (KVB) und die gesetzlichen Krankenkassen erstmals gemeinsam Qualitätskriterien für Intraokularlinsen vorgeschlagen, in denen auch eine maximal zulässige UV-Transmission von 10 % bis 400 nm festgelegt ist. Seither wird erneut diskutiert, in welchem Umfang Intraokularlinsen (IOL) das UV-Licht filtern sollten. Im vorliegenden Artikel werden zunächst exakte Definitionen der Spektralbereiche des Lichtes aufgeführt. So gilt die Grenze von 400 nm heute als anerkannter Standard zur Abgrenzung von UV-Licht und sichtbarem Licht. Weiterhin wird der Umfang der Strahlenbelastung des Auges durch UV-Licht ebenso erläutert wie Mechanismen oxidativer Schädigung der Retina durch UV-Licht. Umfassende labor- und tierexperimentelle Untersuchungen belegen, dass kurzwelliges Licht, d. h. v. a. UV-Licht, aber auch blaues Licht, photochemische Schäden an der Netzhaut verursachen kann, wobei die primären Orte der Schädigung die Außensegmente der Photorezeptoren und das retinale Pigmentepithel (RPE) sind. Physiologische Schutzmechanismen des Auges vor UV-Licht wie u. a. die Filtereigenschaften okulärer Strukturen werden detailliert beschrieben. So wird die UV-Strahlung bis 300 nm durch Hornhaut, Kammerwasser und Glaskörper gefiltert, während die UV-Strahlung von 300–400 nm durch die natürliche, klare Linse eines Erwachsenen weitgehend gefiltert wird. Im Rahmen der Kataraktchirurgie wird die natürliche Linse und damit der Schutz der Retina vor UV-Licht von 300–400 nm entfernt. Da UV-Licht nicht zum Sehvermögen beiträgt, aber retinale Strukturen schädigen kann, sollte daher im Rahmen der Kataraktoperation eine UV-Blocker-Intraokularlinse implantiert werden, die bis nahe 400 nm über eine maximale Durchlässigkeit von 10 % oder sogar weniger verfügt, um so auch nach Kataraktoperation einen UV-Schutz der Netzhaut zu gewährleisten. Diese theoretischen Erwägungen werden durch zahlreiche experimentelle und klinische Belege untermauert.
Abstract
Since the late 1980s implantation of UV-blocker intraocular lenses during cataract surgery has become an internationally accepted standard. Last year the Kassenärztliche Vereinigung Bayern (KVB) and statutory health insurance organisations proposed for the first time quality criteria for intraocular lenses (IOL), thereby including exact parameters for the amount of UV light transmission (≤ 10 % at 400 nm). Since then, the discussion has been raised again as to what extent IOLs should filter or block UV light. In this article, exact definitions of spectral subbands within the optical radiation band are given. Today, 400 nm is the internationally accepted standard to distinguish UV light and visible light. Moreover, exposure of the eye to UV radiation is described as well as mechanisms of photooxidative damage to the retina. Comprehensive laboratory and animal experimental studies show that light of short wave lengths, i.e., above all UV light but also blue light, may induce photochemical damage to the retina. Primary sites of such damage are both the outer segments of the photoreceptors and the retinal pigment epithelium (RPE). Physiological protective mechanisms of the eye, such as filtering properties of different ocular media are described in detail. Cornea, aqueous and vitreous absorb UV radiation below 300 nm, while the natural adult lens absorbs UV radiation between 300 and 400 nm. This protection is lost when the lens is removed by cataract surgery and thus should be restored. UV light does not contribute to vision but damages retinal structures. Therefore, UV-blocking intraocular lenses with a 10 % cut-off near 400 nm should be implanted during cataract surgery. This ensures sufficient retinal protection after surgery. These theoretical considerations are supported by results from animal and clinical studies.
-
Literatur
- 1 Barth J, Cadet J, Cesarini JP et al. 134/1 TC 6-26 Report: Standardization of the terms UV-A1, UV-A2, and UV-B. Collection in Photobiology and Photochemistry. Vienna, Austria: Commission Internationale de l`Eclairage; 1999
- 2 Glickman RD. Ultraviolet phototoxicity to the retina. Eye Contact Lens 2011; 37: 196-205
- 3 International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3 microM). Health Phys 1997; 73: 539-554
- 4 Mainster MA, Turner PL. Retinal Injuries from Light: Mechanisms, Hazards and Prevention. In: Ryan SJ, Hinton DR, Schachat AP, et al., eds. Retina. Vol 2. London: Elsevier; 2006: 1857-1870
- 5 World Health Organization. Global Solar UV-Index – A Practical Guide. Geneva: WHO; 2002. (Available from: http://www.unep.org/pdf/Solar_Index_Guide.pdf)
- 6 Bergmanson JP, Sheldon TM. Ultraviolet radiation revisited. CLAO J 1997; 23: 196-204
- 7 Chandler H. Ultraviolet absorption by contact lenses and the significance to ocular anterior segment. Eye Contact Lens 2011; 37: 259-266
- 8 Taylor H. The biological effects of UVB on the eye. Photochem Photobiol 1989; 50: 489-492
- 9 Lindstrom RL, Doddi N. Ultraviolet light absorption in intraocular lenses. J Cat Refract Surg 1986; 12: 285-289
- 10 Sliney DH. Photoprotection of the eye – UV radiation and sunglasses. J Photochem Photobiol B 2001; 64: 166-175
- 11 Glickman RD. Phototoxicity to the retina. Mechanisms of damage. Int J Toxicol 2002; 21: 473-490
- 12 Youssef PN, Sheibani N, Albert DM. Retinal light toxicity. Eye (Lond) 2011; 25: 1-14
- 13 Lucas RM. An epidemiological perspective of ultraviolet exposure – public health concerns. Eye Contact Lens 2011; 37: 168-175
- 14 Schauder S. UV-Schutz der Haut. Hautnah Dermatologie 2006; 3: 118-127
- 15 Hannemann KK, Cooper KD, Baron ED. Ultraviolet immunosuppression: mechanisms and consequences. Dermatol Clin 2006; 24: 19-25
- 16 Granstein RD. Evidence that sunscreens prevent UV radiation-induced immunosuppression in humans. Sunscreens have their day in the sun. Arch Dermatol 1995; 131: 1201-1204
- 17 Krutmann J. Inhibitorische Wirkung von Lichtschutzexterna auf die Entwicklung von Hautkrebs. Hautarzt 2001; 52: 62-63
- 18 Empfehlung 2006/647/EG der Kommission vom 22. September 2006 über die Wirksamkeit von Sonnenschutzmitteln und diesbezügliche Herstellerangaben. Im Internet:. http://eur-lex.europa.eu/search.html?instInvStatus=ALL&text=Empfehlung%25202006/647/EG%2520der%2520Kommission%2520vom%252022.%2520September%25202006%2520%25C3%25BCber%2520die%2520Wirksamkeit%2520von%2520Sonnenschutzmitteln%2520und%2520diesbez%25C3%25BCgliche%2520Herstellerangaben.&qid=1401717009259&DTC=false&DTS_DOM=ALL&textScope=ti-te&type=advanced&lang=de&SUBDOM_INIT=ALL_ALL&DTS_SUBDOM=ALL_ALL Stand: 20.02.2014
- 19 Sliney DH. Exposure geometry and spectral environment determine photobiological effects on the eye. Photochem Photobiol 2005; 81: 483-489
- 20 Solley WA, Sternberg P. Retinal phototoxicity. Int Ophthalmol Clin 1999; 39: 1-12
- 21 Höh AE, Ach T, Amberger R et al. Lichtexposition bei vitreoretinaler Chirurgie. Ophthalmologe 2008; 105: 898-904
- 22 Augustin AJ, Hunt S, Breipohl W et al. Influence of oxygen-free radicals and free-radical scavengers on the growth behaviour and oxidative tissue-damage of bovine retinal-pigment epithelium-cells in vitro. Graefes Arch Clin Exp Ophthalmol 1996; 234: 58-63
- 23 Patton WP, Chakravarthy U, Davies RJ et al. Comet assay of UV-induced DNA damage in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1999; 40: 3268-3275
- 24 Ham jr. WT, Mueller HA, Ruffolo jr. JJ et al. Sensitivity of the retina to radiation damage as a function of wavelength. Photochem Photobiol 1979; 29: 735-743
- 25 Ham jr. WT, Mueller HA, Ruffolo jr. JJ et al. Action spectrum for retinal injury from near-ultraviolet radiation in the aphakic monkey. Am J Ophthalmol 1982; 93: 299-306
- 26 Ham jr. WT, Mueller HA, Ruffolo jr. JJ et al. Histologic analysis of photochemical lesions produced in rhesus retina by short wavelength light. Invest Ophthalmol Vis Sci 1978; 17: 1029-1035
- 27 Ham jr. WT, Mueller HA, Ruffolo jr. JJ et al. Solar retinopathy as a function of wavelength. Its significance for protective eyewear. In: Williams TP, eds. The Effects of constant Light on visual Processes. New York: Plenum Press; 1980: 319-346
- 28 Mainster MA. Spectral transmittance of intraocular lenses and retinal damage from intense light sources. Am J Ophthalmol 1978; 85: 167-170
- 29 Ham jr. WT, Mueller HA, Sliney DH. Retinal sensitivity to damage from short wavelength light. Nature 1976; 260: 153-155
- 30 Mainster MA. Solar retinitis, photic maculopathy and the pseudophakic eye. J Am Intraocul Implant Soc 1978; 4: 84-86
- 31 Ham jr. WT, Ruffolo jr. JJ, Mueller HA et al. The nature of retinal radiation damage: dependence on wavelength, power level and exposure time. Vis Res 1980; 20: 1105-1111
- 32 Mainster MA, Ham jr. WT, Delori FC. Potential retinal hazards. Instrument and environment light sources. Ophthalmology 1983; 90: 927-932
- 33 Gorgels TG, Van Norren D. Ultraviolet and green light cause different types of damage in rat retina. Invest Ophthalmol Vis Sci 1995; 36: 851-863
- 34 Gorgels TG, Van Norren D. Two spectral types of retinal light damage occur in albino as well as in pigmented rat: no essential role for melanin. Exp Eye Res 1998; 66: 155-162
- 35 Zigman S, Vaughan T. Near-ultraviolet light effects on the lenses and retinas of mice. Invest Ophthalmol 1974; 13: 462-465
- 36 Sundelin S, Wihlmark U, Nilsson SE et al. Lipofuscin accumulation in cultured retinal pigment epithelial cells reduces their phagocytic capacity. Curr Eye Res 1998; 17: 851-857
- 37 Grossweiner LI. Photochemistry of proteins. A review. Curr Eye Res 1984; 3: 137-145
- 38 Mainster MA, Turner PL. Ultraviolet-B phototoxicity and hypothetical photomelanomagenesis: intraocular and crystalline lens photoprotection. Am J Ophthalmol 2010; 149: 543-549
- 39 Boettner EA, Wolter JR. Transmission of the ocular media. Invest Ophthalmol 1962; 1: 776-783
- 40 Barker FM, Brainard GC. The direct spectral transmittance of the excised human lens as a function of age. Washington DC: US Food and Drug Administration; 1991: FDA 785345 0090 RA
- 41 Bron AJ, Vrensen GF, Koretz J et al. The ageing lens. Ophthalmologica 2000; 214: 86-104
- 42 Remé C, Reinboth J, Claußen M. Light damage revisited: converging evidence, diverging views?. Graefes Arch Clin Exp Ophthalmol 1996; 234: 2-11
- 43 Bundesamt für Strahlenschutz. Was ist UV-Strahlung?. http://www.bfs.de/de/uv/uv2/uv_strahlung.html Stand: 20.02.2014
- 44 Augustin AJ, Dick HB, Offermann I et al. Bedeutung oxidativer Mechanismen bei Erkrankungen der Netzhaut. Klin Monatsbl Augenheilkd 2002; 219: 1-14
- 45 Chew EY, SanGiovanni JP, Ferris FL et al. The Age-Related Eye Disease Study 2 (AREDS2) Research Group. Lutein/zeaxanthin for the treatment of age-related cataract: AREDS2 randomized trial report no. 4. JAMA Ophthalmol 2013; 131: 843-850
- 46 Werner JS, Spillmann L. UV-absorbing intraocular lenses: safety, efficacy, and consequences for the cataract patient. Graefes Arch Clin Exp Ophthalmol 1989; 227: 248-256
- 47 Mainster MA. The spectra, classification, and rationale of ultraviolet-protective intraocular lenses. Am J Ophthalmol 1986; 102: 727-732
- 48 Normenausschuss Feinmechanik und Optik (NAFuO). DIN EN ISO 11979-2 und DIN EN ISO 11979-2 Berichtigung. Ophthalmische Implantate. Intraokularlinsen - Teil 2: Optische Eigenschaften und Prüfverfahren. Berlin: Beuth Verlag; 2000
- 49 Mainster MA. Violet and blue light blocking intraocular lenses: photoprotection versus photoreception. Br J Ophthalmol 2006; 90: 784-792
- 50 Laube T, Apel H, Koch HR. Ultraviolet radiation absorption of intraocular lenses. Ophthalmology 2004; 111: 880-885
- 51 Artigas JM, Felipe A, Navea A et al. Spectral transmittance of intraocular lenses under natural and artificial illumination. Ophthalmology 2011; 118: 3-8
- 52 Youn HY, McCanna DJ, Sivak JG et al. In vitro ultraviolet–induced damage in human corneal, lens, and retinal pigment epithelial cells. Mol Vis 2011; 17: 237-246
- 53 Peyman GA, Zak R, Sloane H. Ultraviolet pseudophakos: an efficacy study. Am Intraocular Implant Soc J 1983; 9: 161-170
- 54 Kamel ID, Parker JA. Protection from ultraviolet exposure in aphakic erythropsia. Can J Ophthalmol 1973; 38: 557-565
- 55 Jordan DR, Valberg JD. Dyschromatopsia following cataract surgery. Can J Ophthalmol 1986; 21: 140-143
- 56 Lawrence HM, Reynolds TR. Erythropsial phototoxicity associated with non-ultraviolet-filtering intraocular lenses. J Cat Refract Surg 1989; 15: 569-572
- 57 Wu CW, Doughman DJ. Erythropsia revisited. J Cataract Refract Surg 2007; 33: 548-549
- 58 Kraff MC, Sanders DR, Jampol LM et al. Effect of an ultraviolet filtering intraocular lens on cystoid macular edema. Ophthalmology 1985; 92: 366-369
- 59 Werner JS, Steele VG, Pfoff DS. Loss of human photoreceptor sensitivity associated with chronic exposure to ultraviolet radiation. Ophthalmology 1989; 96: 1552-1558