Subscribe to RSS
DOI: 10.1055/s-0034-1370766
Genetic Basis of Thrombosis in Cancer
Publication History
Publication Date:
05 March 2014 (online)
Abstract
Genetically altered cancer cells both provoke and respond to changes in their microenvironment, stroma, and vasculature. This includes local and systemic activation of the coagulation system, which is a part of the functional continuum involving inflammation, angiogenesis, and tissue repair programs, often reactivated in cancer. These responses coevolve with, and contribute to, the malignant process. Cancer coagulopathy is not only a source of comorbidity and mortality in cancer patients, but it also affects the disease biology including processes of tumor growth, initiation, dormancy, invasion, angiogenesis, metastasis, and therapeutic responsiveness. Notably, genetic and cellular differences between different cancer types are paralleled by a degree of diversity in the related coagulation system perturbations. Although some of these differences may be unspecific, iatrogenic, or indirect in nature, others are affected by oncogenic pathways (RAS, EGFR, HER2, MET, PTEN, and TP53) activated in cancer cells due to driver mutations of critical genes. Such mutations cooperate with hypoxia, cellular differentiation, and other influences to alter the expression of tissue factor, protease-activated receptors (e.g., PAR-1 and PAR-2), coagulation factors (FII and FVII), and other molecules related to the hemostatic system. Oncogenic pathways also control secretion of some of these entities from cancer cells, either as soluble proteins, or as cargo of extracellular vesicles/microparticles. Moreover, emerging evidence suggests that the expression profiles of coagulation-related genes differ between molecularly and genetically distinct subgroups of specific malignancies such as glioblastoma multiforme and medulloblastoma. Certain hereditary thrombophilias may also affect cancer pathogenesis. We suggest that mechanisms of cancer coagulopathy may be more diverse and genetically modulated than hitherto realized. If so, a possibility may exist to deliver more personalized, biologically based, anticoagulation, and thereby improve patient survival.
-
References
- 1 Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315 (26) 1650-1659
- 2 Browder T, Folkman J, Pirie-Shepherd S. The hemostatic system as a regulator of angiogenesis. J Biol Chem 2000; 275 (3) 1521-1524
- 3 Dahlbäck B. Coagulation and inflammation—close allies in health and disease. Semin Immunopathol 2012; 34 (1) 1-3
- 4 van Hinsbergh VW. Endothelium—role in regulation of coagulation and inflammation. Semin Immunopathol 2012; 34 (1) 93-106
- 5 Ruf W. Tissue factor and cancer. Thromb Res 2012; 130 (Suppl. 01) S84-S87
- 6 Degen JL, Palumbo JS. Hemostatic factors, innate immunity and malignancy. Thromb Res 2012; 129 (Suppl. 01) S1-S5
- 7 Fang H, Declerck YA. Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res 2013; 73 (16) 4965-4977
- 8 Peinado H, Alečković M, Lavotshkin S , et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012; 18 (6) 883-891
- 9 Folkman J. Angiogenesis: an organizing principle for drug discovery?. Nat Rev Drug Discov 2007; 6 (4) 273-286
- 10 Mantovani A, Garlanda C. Platelet-macrophage partnership in innate immunity and inflammation. Nat Immunol 2013; 14 (8) 768-770
- 11 Trousseau A. Phlegmasia alba dolens. Clinique Medicale de l'Hotel -Dieu de Paris. Paris, France: The Sydenham Society 2nd; 1865: 654-712
- 12 Falanga A, Marchetti M, Vignoli A. Coagulation and cancer: biological and clinical aspects. J Thromb Haemost 2013; 11 (2) 223-233
- 13 Rickles FR, Patierno S, Fernandez PM. Tissue factor, thrombin, and cancer. Chest 2003; 124 (3, Suppl): 58S-68S
- 14 Tchou J, Conejo-Garcia J. Targeting the tumor stroma as a novel treatment strategy for breast cancer: shifting from the neoplastic cell-centric to a stroma-centric paradigm. Adv Pharmacol 2012; 65: 45-61
- 15 Ferrara N. VEGF as a therapeutic target in cancer. Oncology 2005; 69 (Suppl. 03) 11-16
- 16 Kerbel RS. Tumor angiogenesis. N Engl J Med 2008; 358 (19) 2039-2049
- 17 Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473 (7347) 298-307
- 18 Mackman N. Triggers, targets and treatments for thrombosis. Nature 2008; 451 (7181) 914-918
- 19 Abe K, Shoji M, Chen J , et al. Regulation of vascular endothelial growth factor production and angiogenesis by the cytoplasmic tail of tissue factor. Proc Natl Acad Sci U S A 1999; 96 (15) 8663-8668
- 20 von Hundelshausen P, Weber C , von HP. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 2007; 100 (1) 27-40
- 21 Semple JW, Italiano Jr JE, Freedman J. Platelets and the immune continuum. Nat Rev Immunol 2011; 11 (4) 264-274
- 22 Schulz C, Engelmann B, Massberg S. Crossroads of coagulation and innate immunity: the case of deep vein thrombosis. J Thromb Haemost 2013; 11 (Suppl. 01) 233-241
- 23 Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 2012; 33 (4) 207-214
- 24 Finak G, Bertos N, Pepin F , et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 2008; 14 (5) 518-527
- 25 Rak J. Ras oncogenes and tumor vascular interface. In: Thomas-Tikhonenko A, , ed. Cancer Genome and Tumor Microenvironment. New York, NY: Springer; 2009: 133-165
- 26 Magnus N, Garnier D, Rak J. Oncogenic epidermal growth factor receptor up-regulates multiple elements of the tissue factor signaling pathway in human glioma cells. Blood 2010; 116 (5) 815-818
- 27 Magnus N, Gerges N, Jabado N, Rak J. Coagulation-related gene expression profile in glioblastoma is defined by molecular disease subtype. J Thromb Haemost 2013; 11 (6) 1197-1200
- 28 Timp JF, Braekkan SK, Versteeg HH, Cannegieter SC. Epidemiology of cancer-associated venous thrombosis. Blood 2013; 122 (10) 1712-1723
- 29 Sturm D, Witt H, Hovestadt V , et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 2012; 22 (4) 425-437
- 30 Bishop JM. Cancer: the rise of the genetic paradigm. Genes Dev 1995; 9 (11) 1309-1315
- 31 Gerlinger M, Rowan AJ, Horswell S , et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366 (10) 883-892
- 32 Killela PJ, Reitman ZJ, Jiao Y , et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A 2013; 110 (15) 6021-6026
- 33 Rak J, Mitsuhashi Y, Bayko L , et al. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 1995; 55 (20) 4575-4580
- 34 Petit AM, Rak J, Hung M-C , et al. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 1997; 151 (6) 1523-1530
- 35 Rastinejad F, Polverini PJ, Bouck NP. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 1989; 56 (3) 345-355
- 36 Volpert OV, Pili R, Sikder HA , et al. Id1 regulates angiogenesis through transcriptional repression of thrombospondin-1. Cancer Cell 2002; 2 (6) 473-483
- 37 Takahashi Y, Bucana CD, Cleary KR, Ellis LM. p53, vessel count, and vascular endothelial growth factor expression in human colon cancer. Int J Cancer 1998; 79 (1) 34-38
- 38 Bouck N, Stellmach V, Hsu SC. How tumors become angiogenic. Adv Cancer Res 1996; 69: 135-174
- 39 Zabrenetzky V, Harris CC, Steeg PS, Roberts DD. Expression of the extracellular matrix molecule thrombospondin inversely correlates with malignant progression in melanoma, lung and breast carcinoma cell lines. Int J Cancer 1994; 59 (2) 191-195
- 40 Teodoro JG, Parker AE, Zhu X, Green MR. p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science 2006; 313 (5789) 968-971
- 41 Assadian S, El-Assaad W, Wang XQ , et al. p53 inhibits angiogenesis by inducing the production of Arresten. Cancer Res 2012; 72 (5) 1270-1279
- 42 Mazure NM, Chen EY, Yeh P, Laderoute KR, Giaccia AJ. Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. Cancer Res 1996; 56 (15) 3436-3440
- 43 Viloria-Petit A, Miquerol L, Yu JL , et al. Contrasting effects of VEGF gene disruption in embryonic stem cell-derived versus oncogene-induced tumors. EMBO J 2003; 22 (16) 4091-4102
- 44 Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2005; 8 (4) 299-309
- 45 Phan VT, Wu X, Cheng JH , et al. Oncogenic RAS pathway activation promotes resistance to anti-VEGF therapy through G-CSF-induced neutrophil recruitment. Proc Natl Acad Sci U S A 2013; 110 (15) 6079-6084
- 46 Yachida S, Iacobuzio-Donahue CA. Evolution and dynamics of pancreatic cancer progression. Oncogene 2013; 32 (45) 5253-5260
- 47 Feig C, Gopinathan A, Neesse A, Chan DS, Cook N, Tuveson DA. The pancreas cancer microenvironment. Clin Cancer Res 2012; 18 (16) 4266-4276
- 48 Tas F, Karabulut S, Bilgin E, Kılıc L, Ciftci R, Duranyildiz D. Clinical significance of coagulation assays in metastatic pancreatic adenocarcinoma. J Gastrointest Cancer 2013; 44 (4) 404-409
- 49 Wun T, White RH. Epidemiology of cancer-related venous thromboembolism. Best Pract Res Clin Haematol 2009; 22 (1) 9-23
- 50 Sparmann A, Bar-Sagi D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 2004; 6 (5) 447-458
- 51 Ancrile B, Lim KH, Counter CM. Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev 2007; 21 (14) 1714-1719
- 52 Demers M, Krause DS, Schatzberg D , et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A 2012; 109 (32) 13076-13081
- 53 Borrello MG, Degl'Innocenti D, Pierotti MA. Inflammation and cancer: the oncogene-driven connection. Cancer Lett 2008; 267 (2) 262-270
- 54 Burrell K, Agnihotri S, Leung M, Dacosta R, Hill R, Zadeh G. A novel high-resolution in vivo imaging technique to study the dynamic response of intracranial structures to tumor growth and therapeutics. J Vis Exp 2013; (76) e50363
- 55 Lisanti MP, Martinez-Outschoorn UE, Sotgia F. Oncogenes induce the cancer-associated fibroblast phenotype: Metabolic symbiosis and “fibroblast addiction” are new therapeutic targets for drug discovery. Cell Cycle 2013; 123 (17) 2723-2732
- 56 Tchou J, Kossenkov AV, Chang L , et al. Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles. BMC Med Genomics 2012; 5: 39
- 57 Hill R, Song Y, Cardiff RD, Van Dyke T. Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 2005; 123 (6) 1001-1011
- 58 Ricci-Vitiani L, Pallini R, Biffoni M , et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 2010; 468 (7325) 824-828
- 59 Soda Y, Marumoto T, Friedmann-Morvinski D , et al. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci U S A 2011; 108 (11) 4274-4280
- 60 Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci U S A 2009; 106 (10) 3794-3799
- 61 Skog J, Würdinger T, van Rijn S , et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008; 10 (12) 1470-1476
- 62 Yang FC, Ingram DA, Chen S , et al. Nf1-dependent tumors require a microenvironment containing Nf1+/— and c-kit-dependent bone marrow. Cell 2008; 135 (3) 437-448
- 63 Bronisz A, Godlewski J, Wallace JA , et al. Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol 2012; 14 (2) 159-167
- 64 Josson S, Matsuoka Y, Chung LW, Zhau HE, Wang R. Tumor-stroma co-evolution in prostate cancer progression and metastasis. Semin Cell Dev Biol 2010; 21 (1) 26-32
- 65 Smalheiser NR. Do Neural Cells Communicate with Endothelial Cells via Secretory Exosomes and Microvesicles?. Cardiovasc Psychiatry Neurol 2009; 2009: 383086
- 66 Rak J. Extracellular vesicles - biomarkers and effectors of the cellular interactome in cancer. Front Pharmacol 2013; 4: 21
- 67 Luga V, Zhang L, Viloria-Petit AM , et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 2012; 151 (7) 1542-1556
- 68 Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 2006; 20 (9) 1487-1495
- 69 Grange C, Tapparo M, Collino F , et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 2011; 71 (15) 5346-5356
- 70 Putz U, Doan A, Tan S-S. The tumor suppressor PTEN is transported in exosomes for extracellular phosphatase activity. J Extracellular Vesicles 2012; 1: 78
- 71 Al-Nedawi K, Meehan B, Micallef J , et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 2008; 10 (5) 619-624
- 72 Rak J, Klement G. Impact of oncogenes and tumor suppressor genes on deregulation of hemostasis and angiogenesis in cancer. Cancer Metastasis Rev 2000; 19 (1-2) 93-96
- 73 Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nat Rev Neurosci 2007; 8 (8) 610-622
- 74 Dvorak HF, Quay SC, Orenstein NS , et al. Tumor shedding and coagulation. Science 1981; 212 (4497) 923-924
- 75 Tehrani M, Friedman TM, Olson JJ, Brat DJ. Intravascular thrombosis in central nervous system malignancies: a potential role in astrocytoma progression to glioblastoma. Brain Pathol 2008; 18 (2) 164-171
- 76 Rong Y, Durden DL, Van Meir EG, Brat DJ. 'Pseudopalisading' necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 2006; 65 (6) 529-539
- 77 Brat DJ, Van Meir EG. Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma. Lab Invest 2004; 84 (4) 397-405
- 78 Holash J, Maisonpierre PC, Compton D , et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999; 284 (5422) 1994-1998
- 79 Del Conde I, Shrimpton CN, Thiagarajan P, López JA. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 2005; 106 (5) 1604-1611
- 80 Rak J, Yu J, Milsom C. Oncogene-driven hemostatic changes in cancer. Cancer Invest 2009; 27 (s1) 28-35
- 81 Rak J, Yu JL, Luyendyk J, Mackman N. Oncogenes, trousseau syndrome, and cancer-related changes in the coagulome of mice and humans. Cancer Res 2006; 66 (22) 10643-10646
- 82 Yu JL, May L, Lhotak V , et al. Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 2005; 105 (4) 1734-1741
- 83 Regina S, Valentin JB, Lachot S, Lemarié E, Rollin J, Gruel Y. Increased tissue factor expression is associated with reduced survival in non-small cell lung cancer and with mutations of TP53 and PTEN. Clin Chem 2009; 55 (10) 1834-1842
- 84 Regina S, Rollin J, Bléchet C, Iochmann S, Reverdiau P, Gruel Y. Tissue factor expression in non-small cell lung cancer: relationship with vascular endothelial growth factor expression, microvascular density, and K-ras mutation. J Thorac Oncol 2008; 3 (7) 689-697
- 85 Milsom CC, Yu JL, Mackman N , et al. Tissue factor regulation by epidermal growth factor receptor and epithelial-to-mesenchymal transitions: effect on tumor initiation and angiogenesis. Cancer Res 2008; 68 (24) 10068-10076
- 86 Rong Y, Post DE, Pieper RO, Durden DL, Van Meir EG, Brat DJ. PTEN and hypoxia regulate tissue factor expression and plasma coagulation by glioblastoma. Cancer Res 2005; 65 (4) 1406-1413
- 87 Rong Y, Hu F, Huang R , et al. Early growth response gene-1 regulates hypoxia-induced expression of tissue factor in glioblastoma multiforme through hypoxia-inducible factor-1-independent mechanisms. Cancer Res 2006; 66 (14) 7067-7074
- 88 Rong Y, Belozerov VE, Tucker-Burden C , et al. Epidermal growth factor receptor and PTEN modulate tissue factor expression in glioblastoma through JunD/activator protein-1 transcriptional activity. Cancer Res 2009; 69 (6) 2540-2549
- 89 Jähner D, Hunter T. The stimulation of quiescent rat fibroblasts by v-src and v-fps oncogenic protein-tyrosine kinases leads to the induction of a subset of immediate early genes. Oncogene 1991; 6 (7) 1259-1268
- 90 Provençal M, Berger-Thibault N, Labbé D , et al. Tissue factor mediates the HGF/Met-induced anti-apoptotic pathway in DAOY medulloblastoma cells. J Neurooncol 2010; 97 (3) 365-372
- 91 D'Asti E, Huang A, Rak J. Downregulation of tissue factor (TF) in medulloblastoma cells expressing miR-520g. Presented at: Keystone Syposia; March 30, 2012; Snowmass, CO
- 92 Yu G, Li H, Wang X , et al. MicroRNA-19a targets tissue factor to inhibit colon cancer cells migration and invasion. Mol Cell Biochem 2013; 380 (1-2) 239-247
- 93 Yu Y-H, Wu D-S, Huang F-F , et al. MicroRNA-20b and ERK1/2 pathway independently regulate the expression of tissue factor in hematopoietic and trophoblastic differentiation of human embryonic stem cells. Stem Cell Res Ther 2013; 4 (5s) 121
- 94 Tallman MS, Lefèbvre P, Baine RM , et al. Effects of all-trans retinoic acid or chemotherapy on the molecular regulation of systemic blood coagulation and fibrinolysis in patients with acute promyelocytic leukemia. J Thromb Haemost 2004; 2 (8) 1341-1350
- 95 Falanga A, Marchetti M, Vignoli A , et al. V617F JAK-2 mutation in patients with essential thrombocythemia: relation to platelet, granulocyte, and plasma hemostatic and inflammatory molecules. Exp Hematol 2007; 35 (5) 702-711
- 96 Bogdanov VY, Balasubramanian V, Hathcock J, Vele O, Lieb M, Nemerson Y. Alternatively spliced human tissue factor: a circulating, soluble, thrombogenic protein. Nat Med 2003; 9 (4) 458-462
- 97 van den Berg YW, van den Hengel LG, Myers HR , et al. Alternatively spliced tissue factor induces angiogenesis through integrin ligation. Proc Natl Acad Sci U S A 2009; 106 (46) 19497-19502
- 98 Boccaccio C, Sabatino G, Medico E , et al. The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature 2005; 434 (7031) 396-400
- 99 Koizume S, Jin MS, Miyagi E , et al. Activation of cancer cell migration and invasion by ectopic synthesis of coagulation factor VII. Cancer Res 2006; 66 (19) 9453-9460
- 100 Schulze EB, Hedley BD, Goodale D , et al. The thrombin inhibitor Argatroban reduces breast cancer malignancy and metastasis via osteopontin-dependent and osteopontin-independent mechanisms. Breast Cancer Res Treat 2008; 112 (2) 243-254
- 101 Ohgaki H, Kleihues P. Genetic profile of astrocytic and oligodendroglial gliomas. Brain Tumor Pathol 2011; 28 (3) 177-183
- 102 Verhaak RG, Hoadley KA, Purdom E , et al; Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17 (1) 98-110
- 103 Kool M, Korshunov A, Remke M , et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 2012; 123 (4) 473-484
- 104 Northcott PA, Korshunov A, Witt H , et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 2011; 29 (11) 1408-1414
- 105 Rickles FR. Mechanisms of cancer-induced thrombosis in cancer. Pathophysiol Haemost Thromb 2006; 35 (1-2) 103-110
- 106 Kasthuri RS, Taubman MB, Mackman N. Role of tissue factor in cancer. J Clin Oncol 2009; 27 (29) 4834-4838
- 107 Nash GF. Tissue factor (TF) and vascular endothelial growth factor (VEGF) expression in colorectal cancer: relation with cancer recurrence. Colorectal Dis 2007; 9 (9) 858-859
- 108 Young A, Chapman O, Connor C, Poole C, Rose P, Kakkar AK. Thrombosis and cancer. Nat Rev Clin Oncol 2012; 9 (8) 437-449
- 109 Buller HR, van Doormaal FF, van Sluis GL, Kamphuisen PW. Cancer and thrombosis: from molecular mechanisms to clinical presentations. J Thromb Haemost 2007; 5 (Suppl. 01) 246-254
- 110 Versteeg HH, Schaffner F, Kerver M , et al. Inhibition of tissue factor signaling suppresses tumor growth. Blood 2008; 111 (1) 190-199
- 111 Keshava S, Kothari H, Rao LV, Pendurthi UR. Influence of endothelial cell protein C receptor on breast cancer development. J Thromb Haemost 2013; 11 (11) 2062-2065
- 112 Amirkhosravi A, Meyer T, Amaya M , et al. The role of tissue factor pathway inhibitor in tumor growth and metastasis. Semin Thromb Hemost 2007; 33 (7) 643-652
- 113 Auer RA, Scheer AS, McSparron JI , et al. Postoperative venous thromboembolism predicts survival in cancer patients. Ann Surg 2012; 255 (5) 963-970
- 114 Gil-Bernabé AM, Ferjancic S, Tlalka M , et al. Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood 2012; 119 (13) 3164-3175
- 115 Zacharski LR. Malignancy as a solid-phase coagulopathy: implications for the etiology, pathogenesis, and treatment of cancer. Semin Thromb Hemost 2003; 29 (3) 239-246
- 116 Palumbo JS, Talmage KE, Massari JV , et al. Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and-independent mechanisms. Blood 2007; 110 (1) 133-141
- 117 Ngo CV, Picha K, McCabe F , et al. CNTO 859, a humanized anti-tissue factor monoclonal antibody, is a potent inhibitor of breast cancer metastasis and tumor growth in xenograft models. Int J Cancer 2007; 120 (6) 1261-1267
- 118 Liu Y, Jiang P, Capkova K , et al. Tissue factor-activated coagulation cascade in the tumor microenvironment is critical for tumor progression and an effective target for therapy. Cancer Res 2011; 71 (20) 6492-6502
- 119 Zhao J, Aguilar G, Palencia S, Newton E, Abo A. rNAPc2 inhibits colorectal cancer in mice through tissue factor. Clin Cancer Res 2009; 15 (1) 208-216
- 120 Vossen CY, Hoffmeister M, Chang-Claude JC, Rosendaal FR, Brenner H. Clotting factor gene polymorphisms and colorectal cancer risk. J Clin Oncol 2011; 29 (13) 1722-1727
- 121 Palumbo JS, Degen JL. Mechanisms coupling the hemostatic system to colitis-associated cancer. Thromb Res 2010; 125 (Suppl. 02) S39-S43
- 122 Sørensen HT, Mellemkjaer L, Olsen JH, Baron JA. Prognosis of cancers associated with venous thromboembolism. N Engl J Med 2000; 343 (25) 1846-1850
- 123 Fotopoulou C, duBois A, Karavas AN , et al; Arbeitsgemeinschaft Gynaekologische Onkologie Ovarian Cancer Study Group. Incidence of venous thromboembolism in patients with ovarian cancer undergoing platinum/paclitaxel-containing first-line chemotherapy: an exploratory analysis by the Arbeitsgemeinschaft Gynaekologische Onkologie Ovarian Cancer Study Group. J Clin Oncol 2008; 26 (16) 2683-2689
- 124 Kakkar AK, Levine MN, Kadziola Z , et al. Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: the fragmin advanced malignancy outcome study (FAMOUS). J Clin Oncol 2004; 22 (10) 1944-1948
- 125 Lee AY, Rickles FR, Julian JA , et al. Randomized comparison of low molecular weight heparin and coumarin derivatives on the survival of patients with cancer and venous thromboembolism. J Clin Oncol 2005; 23 (10) 2123-2129
- 126 Altinbas M, Coskun HS, Er O , et al. A randomized clinical trial of combination chemotherapy with and without low-molecular-weight heparin in small cell lung cancer. J Thromb Haemost 2004; 2 (8) 1266-1271
- 127 Klerk CP, Smorenburg SM, Otten HM , et al. The effect of low molecular weight heparin on survival in patients with advanced malignancy. J Clin Oncol 2005; 23 (10) 2130-2135
- 128 Akl EA, Gunukula S, Barba M , et al. Parenteral anticoagulation in patients with cancer who have no therapeutic or prophylactic indication for anticoagulation. Cochrane Database Syst Rev 2011; (4) CD006652
- 129 Zhang J, Zhang YL, Ma KX, Qu JM. Efficacy and safety of adjunctive anticoagulation in patients with lung cancer without indication for anticoagulants: a systematic review and meta-analysis. Thorax 2013; 68 (5) 442-450
- 130 Weitz JI. Potential of new anticoagulants in patients with cancer. Thromb Res 2010; 125 (Suppl. 02) S30-S35
- 131 Khorana AA. Venous thromboembolism and prognosis in cancer. Thromb Res 2010; 125 (6) 490-493
- 132 Soff GA. Pathophysiology and management of thrombosis in cancer: 150 years of progress. J Thromb Thrombolysis 2013; 35 (3) 346-351
- 133 Yu J, May L, Milsom C , et al. Contribution of host-derived tissue factor to tumor neovascularization. Arterioscler Thromb Vasc Biol 2008; 28 (11) 1975-1981
- 134 Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz Jr LA, Kinzler KW. Cancer genome landscapes. Science 2013; 339 (6127) 1546-1558
- 135 Rak J, Milsom C, Yu J. Vascular determinants of cancer stem cell dormancy—do age and coagulation system play a role?. APMIS 2008; 116 (7-8) 660-676
- 136 Dick JE. Looking ahead in cancer stem cell research. Nat Biotechnol 2009; 27 (1) 44-46
- 137 Calabrese C, Poppleton H, Kocak M , et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007; 11 (1) 69-82
- 138 Ghajar CM, Peinado H, Mori H , et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 2013; 15 (7) 807-817
- 139 Fidler IJ. Biological heterogeneity of cancer: implication to therapy. Hum Vaccin Immunother 2012; 8 (8) 1141-1142
- 140 Milsom C, Magnus N, Meehan B, Al-Nedawi K, Garnier D, Rak J. Tissue factor and cancer stem cells: is there a linkage?. Arterioscler Thromb Vasc Biol 2009; 29 (12) 2005-2014
- 141 Milsom C, Anderson GM, Weitz JI, Rak J. Elevated tissue factor procoagulant activity in CD133-positive cancer cells. J Thromb Haemost 2007; 5 (12) 2550-2552
- 142 Garnier D, Magnus N, Lee TH , et al. Cancer cells induced to express mesenchymal phenotype release exosome-like extracellular vesicles carrying tissue factor. J Biol Chem 2012; 287 (52) 43565-43572
- 143 Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 2007; 7 (11) 834-846
- 144 Black WC, Welch HG. Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy. N Engl J Med 1993; 328 (17) 1237-1243
- 145 Nierodzik ML, Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 2006; 10 (5) 355-362
- 146 Miller JW, Adamis AP, Shima DT , et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol 1994; 145 (3) 574-584
- 147 Magnus N, Garnier D, Meehan B , et al. Tissue factor expression provokes escape from tumor dormancy and leads to genomic alterations (e-pub ahead of print). Proc Natl Acad Sci USA 2013; ; doi: 10.1073/pnas.1314118111
- 148 Rak J. Microparticles in cancer. Semin Thromb Hemost 2010; 36 (8) 888-906
- 149 Dignat-George F, Boulanger CM. The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 2011; 31 (1) 27-33
- 150 Yu JL, Rak JW. Shedding of tissue factor (TF)-containing microparticles rather than alternatively spliced TF is the main source of TF activity released from human cancer cells. J Thromb Haemost 2004; 2 (11) 2065-2067
- 151 Rauch U, Antoniak S, Boots M , et al. Association of tissue-factor upregulation in squamous-cell carcinoma of the lung with increased tissue factor in circulating blood. Lancet Oncol 2005; 6 (4) 254
- 152 Giesen PL, Nemerson Y. Tissue factor on the loose. Semin Thromb Hemost 2000; 26 (4) 379-384
- 153 Geddings JE, Mackman N. Tumor-derived tissue factor-positive microparticles and venous thrombosis in cancer patients. Blood 2013; 122 (11) 1873-1880
- 154 Rak J, Klement P, Yu J. Genetic determinants of cancer coagulopathy, angiogenesis and disease progression. Vnitr Lek 2006; 52 (Suppl. 01) 135-138
- 155 Izumi H, Takahashi C, Oh J, Noda M. Tissue factor pathway inhibitor-2 suppresses the production of active matrix metalloproteinase-2 and is down-regulated in cells harboring activated ras oncogenes. FEBS Lett 2000; 481 (1) 31-36
- 156 Mazzieri R, Furlan F, D'Alessio S , et al. A direct link between expression of urokinase plasminogen activator receptor, growth rate and oncogenic transformation in mouse embryonic fibroblasts. Oncogene 2007; 26 (5) 725-732
- 157 Zhao Y, Xiao A, Dipierro CG , et al. H-Ras increases urokinase expression and cell invasion in genetically modified human astrocytes through Ras/Raf/MEK signaling pathway. Glia 2008; 56 (8) 917-924
- 158 Yu JL, May L, Klement P, Weitz JI, Rak J. Oncogenes as regulators of tissue factor expression in cancer: implications for tumor angiogenesis and anti-cancer therapy. Semin Thromb Hemost 2004; 30 (1) 21-30
- 159 Yu JL, Xing R, Milsom C, Rak J. Modulation of the oncogene-dependent tissue factor expression by kinase suppressor of ras 1. Thromb Res 2010; 126 (1) e6-e10
- 160 Provençal M, Labbé D, Veitch R , et al. c-Met activation in medulloblastoma induces tissue factor expression and activity: effects on cell migration. Carcinogenesis 2009; 30 (7) 1089-1096
- 161 Zhang X, Yu H, Lou JR , et al. MicroRNA-19 (miR-19) regulates tissue factor expression in breast cancer cells. J Biol Chem 2011; 286 (2) 1429-1435