Semin Musculoskelet Radiol 2014; 18(02): 123-132
DOI: 10.1055/s-0034-1371015
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

PET Tracers in Musculoskeletal Disease beyond FDG

Hinrich A. Wieder
1   Zentrum für Radiologie und Nuklearmedizin, Grevenbroich, Germany
2   Department of Nuclear Medicine, Technische Universität München, Munich, Germany
,
Kelsey L. Pomykala
3   Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
,
Matthias R. Benz
3   Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
,
Andreas K. Buck
4   Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
,
Ken Herrmann
3   Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
4   Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
08. April 2014 (online)

Abstract

Musculoskeletal tumors comprise a multitude of tumor entities with different grades of malignancy, biological behavior, and therapeutic options. Positron emission tomography (PET) using the glucose analog [18F]fluorodeoxyglucose (FDG) is an established imaging modality for detection and staging of cancer, despite some shortcomings. Numerous studies have evaluated the role of PET imaging musculoskeletal tumors beyond FDG. The use of more specific novel PET radiopharmaceuticals such as the proliferation marker [18F]fluorodeoxythymidine (FLT), the bone-imaging agent [18F]sodium fluoride, amino acid tracers ([11C]methionine, [18F]fluoroethyltyrosine), or biomarkers of neoangiogenesis ([18F]galacto-RGD) can potentially provide insights into the biology of musculoskeletal tumors with focus on tumor grading, treatment monitoring, posttherapy assessment, and estimation of individual prognosis. In this article, we review the potential role of these alternative PET tracers in musculoskeletal disorders with emphasis on oncologic applications.

 
  • References

  • 1 Landis SH, Murray T, Bolden S, Wingo PA. Cancer statistics, 1999. CA Cancer J Clin 1999; 49 (1) 8-31 , 1
  • 2 Eary JF, Conrad EU. Imaging in sarcoma. J Nucl Med 2011; 52 (12) 1903-1913
  • 3 von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and future directions. Radiology 2006; 238 (2) 405-422
  • 4 Bastiaannet E, Groen H, Jager PL , et al. The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas; a systematic review and meta-analysis. Cancer Treat Rev 2004; 30 (1) 83-101
  • 5 Aoki J, Watanabe H, Shinozaki T , et al. FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 2001; 219 (3) 774-777
  • 6 Kubota R, Kubota K, Yamada S, Tada M, Ido T, Tamahashi N. Microautoradiographic study for the differentiation of intratumoral macrophages, granulation tissues and cancer cells by the dynamics of fluorine-18-fluorodeoxyglucose uptake. J Nucl Med 1994; 35 (1) 104-112
  • 7 Nieweg OE, Pruim J, van Ginkel RJ , et al. Fluorine-18-fluorodeoxyglucose PET imaging of soft-tissue sarcoma. J Nucl Med 1996; 37 (2) 257-261
  • 8 Grierson JR, Shields AF. Radiosynthesis of 3′-deoxy-3′-[(18)F]fluorothymidine: [(18)F]FLT for imaging of cellular proliferation in vivo. Nucl Med Biol 2000; 27 (2) 143-156
  • 9 Kenny LM, Vigushin DM, Al-Nahhas A , et al. Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res 2005; 65 (21) 10104-10112
  • 10 Francis DL, Visvikis D, Costa DC , et al. Potential impact of [18F]3′-deoxy-3′-fluorothymidine versus [18F]fluoro-2-deoxy-D-glucose in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging 2003; 30 (7) 988-994
  • 11 Buck AK, Schirrmeister H, Hetzel M , et al. 3-deoxy-3-[(18)F]fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res 2002; 62 (12) 3331-3334
  • 12 Choi SJ, Kim JS, Kim JH , et al. [18F]3′-deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging 2005; 32 (6) 653-659
  • 13 Wagner M, Seitz U, Buck A , et al. 3′-[18F]fluoro-3′-deoxythymidine ([18F]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-cell lymphoma model and in the human disease. Cancer Res 2003; 63 (10) 2681-2687
  • 14 Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 1999; 19 (1) 61-77 , quiz 150–151
  • 15 Adler LP, Blair HF, Makley JT , et al. Noninvasive grading of musculoskeletal tumors using PET. J Nucl Med 1991; 32 (8) 1508-1512
  • 16 Eary JF, Conrad EU, Bruckner JD , et al. Quantitative [F-18]fluorodeoxyglucose positron emission tomography in pretreatment and grading of sarcoma. Clin Cancer Res 1998; 4 (5) 1215-1220
  • 17 Buck AK, Herrmann K, Büschenfelde CM , et al. Imaging bone and soft tissue tumors with the proliferation marker [18F]fluorodeoxythymidine. Clin Cancer Res 2008; 14 (10) 2970-2977
  • 18 Cobben DC, Elsinga PH, Suurmeijer AJ , et al. Detection and grading of soft tissue sarcomas of the extremities with (18)F-3′-fluoro-3′-deoxy-L-thymidine. Clin Cancer Res 2004; 10 (5) 1685-1690
  • 19 Barthel H, Cleij MC, Collingridge DR , et al. 3′-deoxy-3′-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 2003; 63 (13) 3791-3798
  • 20 Sugiyama M, Sakahara H, Sato K , et al. Evaluation of 3′-deoxy-3′-18F-fluorothymidine for monitoring tumor response to radiotherapy and photodynamic therapy in mice. J Nucl Med 2004; 45 (10) 1754-1758
  • 21 Chen W, Delaloye S, Silverman DH , et al. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 2007; 25 (30) 4714-4721
  • 22 Pio BS, Byrne FR, Aranda R , et al. Noninvasive quantification of bowel inflammation through positron emission tomography imaging of 2-deoxy-2-[18F]fluoro-D-glucose-labeled white blood cells. Mol Imaging Biol 2003; 5 (4) 271-277
  • 23 Benz MR, Czernin J, Allen-Auerbach MS , et al. 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography for response assessment in soft tissue sarcoma: a pilot study to correlate imaging findings with tissue thymidine kinase 1 and Ki-67 activity and histopathologic response. Cancer 2012; 118 (12) 3135-3144
  • 24 Been LB, Suurmeijer AJ, Elsinga PH, Jager PL, van Ginkel RJ, Hoekstra HJ. 18F-fluorodeoxythymidine PET for evaluating the response to hyperthermic isolated limb perfusion for locally advanced soft-tissue sarcomas. J Nucl Med 2007; 48 (3) 367-372
  • 25 Kerbel RS. Antiangiogenic therapy: a universal chemosensitization strategy for cancer?. Science 2006; 312 (5777) 1171-1175
  • 26 Haubner R, Wester HJ, Weber WA , et al. Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 2001; 61 (5) 1781-1785
  • 27 Beer AJ, Haubner R, Goebel M , et al. Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med 2005; 46 (8) 1333-1341
  • 28 Beer AJ, Haubner R, Sarbia M , et al. Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. Clin Cancer Res 2006; 12 (13) 3942-3949
  • 29 Uematsu T, Yuen S, Yukisawa S , et al. Comparison of FDG PET and SPECT for detection of bone metastases in breast cancer. AJR Am J Roentgenol 2005; 184 (4) 1266-1273
  • 30 Nakai T, Okuyama C, Kubota T , et al. Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imaging 2005; 32 (11) 1253-1258
  • 31 Schiepers C, Nuyts J, Bormans G , et al. Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluoride PET. J Nucl Med 1997; 38 (12) 1970-1976
  • 32 Cook GJ, Fogelman I. The role of positron emission tomography in the management of bone metastases. Cancer 2000; 88 (12, Suppl): 2927-2933
  • 33 Iagaru A, Mittra E, Dick DW, Gambhir SS. Prospective evaluation of (99m)Tc MDP scintigraphy, (18)F NaF PET/CT, and (18)F FDG PET/CT for detection of skeletal metastases. Mol Imaging Biol 2012; 14 (2) 252-259
  • 34 Iagaru A, Mittra E, Mosci C , et al. Combined 18F-fluoride and 18F-FDG PET/CT scanning for evaluation of malignancy: results of an international multicenter trial. J Nucl Med 2013; 54 (2) 176-183
  • 35 Quon A, Dodd R, Iagaru A , et al. Initial investigation of 18F-NaF PET/CT for identification of vertebral sites amenable to surgical revision after spinal fusion surgery. Eur J Nucl Med Mol Imaging 2012; 39 (11) 1737-1744
  • 36 Gamie S, El-Maghraby T. The role of PET/CT in evaluation of facet and disc abnormalities in patients with low back pain using (18)F-Fluoride. Nucl Med Rev Cent East Eur 2008; 11 (1) 17-21
  • 37 Lim R, Fahey FH, Drubach LA, Connolly LP, Treves ST. Early experience with fluorine-18 sodium fluoride bone PET in young patients with back pain. J Pediatr Orthop 2007; 27 (3) 277-282
  • 38 Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 1998; 39 (6) 990-995
  • 39 Tian M, Zhang H, Oriuchi N, Higuchi T, Endo K. Comparison of 11C-choline PET and FDG PET for the differential diagnosis of malignant tumors. Eur J Nucl Med Mol Imaging 2004; 31 (8) 1064-1072
  • 40 Tateishi U, Yamaguchi U, Maeda T , et al. Staging performance of carbon-11 choline positron emission tomography/computed tomography in patients with bone and soft tissue sarcoma: comparison with conventional imaging. Cancer Sci 2006; 97 (10) 1125-1128
  • 41 Fuccio C, Castellucci P, Schiavina R , et al. Role of 11C-choline PET/CT in the re-staging of prostate cancer patients with biochemical relapse and negative results at bone scintigraphy. Eur J Radiol 2012; 81 (8) e893-e896
  • 42 Beheshti M, Vali R, Waldenberger P , et al. The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol 2009; 11 (6) 446-454
  • 43 Beheshti M, Vali R, Waldenberger P , et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging 2008; 35 (10) 1766-1774
  • 44 Eschmann SM, Pfannenberg AC, Rieger A , et al. Comparison of 11C-choline-PET/CT and whole body-MRI for staging of prostate cancer. Nucl Med (Stuttg) 2007; 46 (5) 161-168 ; quiz N47–N48
  • 45 Luboldt W, Küfer R, Blumstein N , et al. Prostate carcinoma: diffusion-weighted imaging as potential alternative to conventional MR and 11C-choline PET/CT for detection of bone metastases. Radiology 2008; 249 (3) 1017-1025
  • 46 Langen KJ, Ziemons K, Kiwit JC , et al. 3-[123I]iodo-alpha-methyltyrosine and [methyl-11C]-L-methionine uptake in cerebral gliomas: a comparative study using SPECT and PET. J Nucl Med 1997; 38 (4) 517-522
  • 47 Leskinen-Kallio S, Ruotsalainen U, Någren K, Teräs M, Joensuu H. Uptake of carbon-11-methionine and fluorodeoxyglucose in non-Hodgkin's lymphoma: a PET study. J Nucl Med 1991; 32 (6) 1211-1218
  • 48 Kole AC, Plaat BE, Hoekstra HJ, Vaalburg W, Molenaar WM. FDG and L-[1-11C]-tyrosine imaging of soft-tissue tumors before and after therapy. J Nucl Med 1999; 40 (3) 381-386
  • 49 Weber WA, Wester HJ, Grosu AL , et al. O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 2000; 27 (5) 542-549
  • 50 Inoue T, Tomiyoshi K, Higuichi T , et al. Biodistribution studies on L-3-[fluorine-18]fluoro-alpha-methyl tyrosine: a potential tumor-detecting agent. J Nucl Med 1998; 39 (4) 663-667
  • 51 Watanabe H, Inoue T, Shinozaki T , et al. PET imaging of musculoskeletal tumours with fluorine-18 alpha-methyltyrosine: comparison with fluorine-18 fluorodeoxyglucose PET. Eur J Nucl Med 2000; 27 (10) 1509-1517
  • 52 Suzuki R, Watanabe H, Yanagawa T , et al. PET evaluation of fatty tumors in the extremity: possibility of using the standardized uptake value (SUV) to differentiate benign tumors from liposarcoma. Ann Nucl Med 2005; 19 (8) 661-670