Subscribe to RSS
DOI: 10.1055/s-0034-1377787
Nosokomiale Gastroenteritiden: Stuhldiagnostik zur Prävention und optimierten Therapie
Publication History
Publication Date:
02 October 2014 (online)
-
Nosokomiale Enteritiden sind ein über die Jahre zunehmendes Problem in Krankenhäusern.
-
Zahlreiche Erreger aus der Gruppe der Viren, Bakterien und Parasiten können eine infektiöse Gastroenteritis auslösen. Aufgrund der Symptomatik sind jedoch meistens keine Rückschlüsse auf den verursachenden Erreger möglich.
-
Eine differenzierte mikrobiologische Diagnostik bildet die Basis für Therapieentscheidungen sowohl für den individuellen Patienten als auch zur Verhinderung von Erregerübertragungen im krankenhaushygienischen Sinne.
-
Die größte Bedeutung als Erreger nosokomialer Enteritiden besitzen Noroviren und Clostridium difficile, deren Nachweismethoden hier detailliert beschrieben werden.
-
Die Datenlage zu Doppelinfektionen ist noch dünn.
-
Darüber hinaus werden die Anforderungen an eine zeitgemäße und krankenhaushygienisch erforderliche Stuhldiagnostik dargelegt:
-
gleichzeitige Testung auf die wichtigsten Erreger,
-
zeitnahe Testung,
-
Anwendung von Methoden, die im klinischen Betrieb hinreichend validiert sind.
-
-
Literatur
- 1 Behnke M, Hansen S, Leistner R et al. Nosocomial infection and antibiotic use: a second national prevalence study in Germany. Dtsch Arztebl Int 2013; 110: 627-633
- 2 Ott E, Saathoff S, Graf K et al. The prevalence of nosocomial and community acquired infections in a university hospital: an observational study. Dtsch Ärztebl Int 2013; 110: 533-540
- 3 Zarb P, Coignard B, Griskeviciene J et al. The European Centre for Disease Prevention and Control (ECDC) pilot point prevalence survey of healthcare-associated infections and antimicrobial use. Euro Surveill 2012; 17 http://www.eurosurveillance.org/images/dynamic/EE/V17N46/art20316.pdf
- 4 Mattner F, Mattner L, Borck HU et al. Evaluation of the impact of the source (patient versus staff) on nosocomial norovirus outbreak severity. Infect Control Hosp Epidemiol 2005; 26: 268-272
- 5 Mattner F, Sohr D, Heim A et al. Risk groups for clinical complications of norovirus infections: an outbreak investigation. Clin Microbiol Infect 2006; 12: 69-74
- 6 van Asten L, van den Wijngaard C, van Pelt W et al. Mortality attributable to 9 common infections: significant effect of influenza A, respiratory syncytial virus, influenza B, norovirus, and parainfluenza in elderly persons. J Infect Dis 2012; 206: 628-639
- 7 Hall AJ, Curns AT, McDonald LC et al. The roles of Clostridium difficile and norovirus among gastroenteritis-associated deaths in the United States, 1999–2007. Clin Infect Dis 2012; 55: 216-223
- 8 Beersma MF, Sukhrie FH, Bogerman J et al. Unrecognized norovirus infections in health care institutions and their clinical impact. J Clin Microbiol 2012; 50: 3040-3045
- 9 Karsten C, Baumgarte S, Friedrich AW et al. Incidence and risk factors for community-acquired acute gastroenteritis in north-west Germany in 2004. Eur J Clin Microbiol Infect Dis 2009; 28: 935-943
- 10 Koo HL, Ajami NJ, Jiang ZD et al. A nosocomial outbreak of norovirus infection masquerading as clostridium difficile infection. Clin Infect Dis 2009; 48: e75-e77
- 11 Henke-Gendo C, Harste G, Juergens-Saathoff B et al. New real-time PCR detects prolonged norovirus excretion in highly immunosuppressed patients and children. J Clin Microbiol 2009; 47: 2855-2862
- 12 Mattner F, Sykora KW, Meissner B et al. An adenovirus type F41 outbreak in a pediatric bone marrow transplant unit: analysis of clinical impact and preventive strategies. Pediatr Infect Dis J 2008; 27: 419-424
- 13 MacCannell T, Umscheid CA, Agarwal RK et al. Guideline for the prevention and control of norovirus gastroenteritis outbreaks in healthcare settings. Infect Control Hosp Epidemiol 2011; 32: 939-969
- 14 Zanini B, Ricci C, Bandera F et al. Incidence of post-infectious irritable bowel syndrome and functional intestinal disorders following a water-borne viral gastroenteritis outbreak. Am J Gastroenterol 2012; 107: 891-899
- 15 Kahlau P, Malecki M, Schildgen V et al. Utility of two novel multiplexing assays for the detection of gastrointestinal pathogens – a first experience. Springerplus 2013; 2: 106
- 16 Gunson RN, Miller J, Carman WF. Comparison of real-time PCR and EIA for the detection of outbreaks of acute gastroenteritis caused by norovirus. Commun Dis Public Health 2003; 6: 297-299
- 17 Dimitriadis A, Bruggink LD, Marshall JA. Evaluation of the Dako IDEIA norovirus EIA assay for detection of norovirus using faecal specimens from Australian gastroenteritis outbreaks. Pathology 2006; 38: 157-165
- 18 Geffers C, Gastmeier P. Nosocomial infections and multidrug-resistant organisms in Germany: epidemiological data from KISS (the Hospital Infection Surveillance System). Dtsch Ärztebl Int 2011; 108: 87-93
- 19 Nationales Referenzzentrum für Surveiilance von nosokomialen Infektionen – NRZ Im Internet: http://www.nrz-hygiene.de/surveillance/kiss/cdad-kiss/ (Stand: 19.7.2014)
- 20 Robert Koch-Institut – RKI Im Internet: http://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2013/Ausgaben/25_13 pdf?__blob=publicationFile (Stand: 19.7.2014)
- 21 Loo VG, Poirier L, Miller MA et al. A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med 2005; 353: 2442-2449
- 22 Hensgens MP, Goorhuis A, Dekkers OM et al. All-cause and disease-specific mortality in hospitalized patients with Clostridium difficile infection: a multicenter cohort study. Clin Infect Dis 2013; 56: 1108-1116
- 23 Patterson L, Wilcox MH, Fawley WN et al. Morbidity and mortality associated with Clostridium difficile ribotype 078: a case-case study. J Hosp Infect 2012; 82: 125-128
- 24 Wilcox MH, Shetty N, Fawley WN et al. Changing epidemiology of Clostridium difficile infection following the introduction of a national ribotyping-based surveillance scheme in England. Clin Infect Dis 2012; 55: 1056-1063
- 25 Alcala L, Martin A, Marin M et al. The undiagnosed cases of Clostridium difficile infection in a whole nation: where is the problem?. Clin Microbiol Infect 2012; 18: E204-213
- 26 Wilcox MH, Planche T, Fang FC et al. What is the current role of algorithmic approaches for diagnosis of Clostridium difficile infection?. J Clin Microbiol 2010; 48: 4347-4353
- 27 Planche T, Aghaizu A, Holliman R et al. Diagnosis of Clostridium difficile infection by toxin detection kits: a systematic review. Lancet Infect Dis 2008; 8: 777-784
- 28 Mattner F, Winterfeld I, Mattner L. Diagnosing toxigenic Clostridium difficile: new confidence bounds show culturing increases sensitivity of the toxin A/B enzyme immunoassay and refute gold standards. Scand J Infect Dis 2012; 44: 578-585
- 29 American Society for Microbiology – ASM Im Internet: http://www.asm.org/images/pdf/Clinical/clostridiumdifficile9–21 pdf/ (Stand: 19.7.2014)
- 30 Shetty N, Wren MW, Coen PG. The role of glutamate dehydrogenase for the detection of Clostridium difficile in faecal samples: a meta-analysis. J Hosp Infect 2011; 77 1-6
- 31 Wilcox MH. Overcoming barriers to effective recognition and diagnosis of Clostridium difficile infection. Clin Microbiol Infect 2012; 18: 13-20
- 32 Planche TD, Davies KA, Coen PG et al. Differences in outcome according to Clostridium difficile testing method: a prospective multicentre diagnostic validation study of C difficile infection. Lancet Infect Dis 2013; 13: 936-945
- 33 Hernandez-Rocha C, Barra-Carrasco J, Álvarez-Lobos M et al. Prospective comparison of a commercial multiplex real-time polymerase chain reaction and an enzyme immunoassay with toxigenic culture in the diagnosis of Clostridium difficile-associated infections. Diagn Microbiol Infect Dis 2013; 75: 361-365
- 34 Dionne LL, Raymond F, Corbeil J et al. Correlation between Clostridium difficile bacterial load, commercial real-time pcr cycle thresholds, and results of diagnostic tests based on enzyme immunoassay and cell culture cytotoxicity assay. J Clin Microbiol 2013; 51: 3624-3630
- 35 Barbut F, Surgers L, Eckert C et al. Does a rapid diagnosis of Clostridium difficile infection impact on quality of patient management?. Clin Microbiol Infect 2014; 20: 136-144
- 36 Kist M, Ackermann A, Autenrieth IB et al. Qualitätsstandards in der mikrobiologisch-infektiologischen Diagnostik (MIQ) 9. München: Urban & Fischer; 2013
- 37 Louie TJ, Miller MA, Mullane KM et al. Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med 2011; 364: 422-431
- 38 ERIC Institutes. Emerging Technology Evidence Report. Fecal microbiota transplantation for treating recurrent Clostridium difficile infection. Manag Care 2013; 22: 18-19
- 39 Debast SB, Bauer MP, Kuijper EJ. European Society of Clinical Microbiology and Infectious Diseases (ESCMID): update of the treatment guidance document for Clostridium difficile infection (CDI). Clin Microbiol Infect 2014; 20: 1-26
- 40 Kielstein JT, Beutel G, Fleig S et al. Best supportive care and therapeutic plasma exchange with or without eculizumab in Shiga-toxin-producing E.coli O104: H4 induced haemolytic-uraemic syndrome: an analysis of the German STEC-HUS registry. Nephrol Dial Transplant 2012; 27: 3807-3815
- 41 Menne J, Nitschke M, Stingele R et al. Validation of treatment strategies for enterohaemorrhagic Escherichia coli O104: H4 induced haemolytic uraemic syndrome: case-control study. BMJ 2012; 345: e4565
- 42 Matthes-Martin S, Boztug H, Lion T. Diagnosis and treatment of adenovirus infection in immunocompromised patients. Expert Rev Anti Infect Ther 2013; 11: 1017-1028
- 43 Brodt H-R, Stille W, Simon C. Antibiotikatherapie. Klinik und Praxis der antiinfektiösen Behandlung. 12. Auflage Stuttgart, New York: Schattauer-Verlag; 2012