Synthesis 2014; 46(17): 2241-2257
DOI: 10.1055/s-0034-1378528
review
© Georg Thieme Verlag Stuttgart · New York

Advancements in Catalytic Asymmetric Intermolecular Ene-Type Reactions

Xiaohua Liu
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China    Fax: +86(28)85418249   Email: xmfeng@scu.edu.cn
,
Ke Zheng
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China    Fax: +86(28)85418249   Email: xmfeng@scu.edu.cn
,
Xiaoming Feng*
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China    Fax: +86(28)85418249   Email: xmfeng@scu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 11 March 2014

Accepted: 07 April 2014

Publication Date:
04 August 2014 (online)


Abstract

The asymmetric ene reaction is an important transformation that provides synthetically valuable allylic derivatives efficiently and enantioselectively. Hence, significant attention has been paid to developing highly efficient chiral catalytic systems to address the issues of reactivity, stereoselectivity, substrate generality, cost and operational simplicity of the process. This review summarizes the advancements of enantioselective intermolecular ene-type reactions involving three kinds of ene components. With particular emphasis on the development and characteristics of various chiral catalysts used, comparisons are made between the related reactions.

1 Introduction

2 Unactivated Alkenes as Ene Components

2.1 Asymmetric Carbonyl Ene Reactions with Active Aldehydes as the Enophiles

2.2 Asymmetric Carbonyl Ene Reactions with Active Ketones as the Enophiles

2.3 Asymmetric Imino Ene Reactions with Imines as the Enophiles

3 Enol Ethers as Ene Components

4 Enamides and Enecarbamates as Ene Components

5 Conclusion and Outlook

 
  • References

    • 1a Treibs W, Schmidt H. Ber. Dtsch. Chem. Ges. 1927; 60: 2335
    • 1b Grignard V, Doeuvre J. C. R. Acad. Sci. 1930; 190: 1164
    • 1c Alder K, Pascher F, Schmitz A. Ber. Dtsch. Chem. Ges. 1943; 76: 27
    • 1d Nobel Lectures, Chemistry 1942–1962. Elsevier; Amsterdam: 1964: 253

      For reviews, see:
    • 2a Dubac J, Laporterie A. Chem. Rev. 1987; 87: 319
    • 2b Mikami K, Shimizu M. Chem. Rev. 1992; 92: 1021
    • 2c Dias LC. Curr. Org. Chem. 2000; 4: 305
    • 2d Clarke ML, France MB. Tetrahedron 2008; 64: 9003
    • 2e Mikami K, Aikawa K In Catalytic Asymmetric Synthesis . 3rd ed.; Ojima I. John Wiley & Sons Inc; Hoboken: 2010. 8D, 683
    • 2f Terada M In Science of Synthesis, Stereoselective Synthesis . Vol. 3. De Vries JG, Molander GA, Evans PA. Thieme; Stuttgart: 2011: 309
  • 3 Maruoka K, Hoshino Y, Shirasaka T, Yamamoto H. Tetrahedron Lett. 1988; 29: 3967
    • 4a Mikami K, Terada M, Nakai T. J. Am. Chem. Soc. 1989; 111: 1940
    • 4b Mikami K, Terada M, Nakai T. J. Am. Chem. Soc. 1990; 112: 3949
  • 5 Terada M, Mikami K. J. Chem. Soc., Chem. Commun. 1994; 833
  • 6 Mikami K, Motoyama Y, Terada M. Inorg. Chim. Acta 1994; 222: 71
  • 7 Yuan Y, Zhang X, Ding K.-L. Angew. Chem. Int. Ed. 2003; 42: 5478
  • 8 Fang F, Xie F, Yu H, Zhang H, Yang B, Zhang WB. Tetrahedron Lett. 2009; 50: 6672
  • 9 Mikami K, Matsukawa S. Nature 1997; 385: 613
  • 10 Takizawa S, Somei H, Jayaprakash D, Sasai H. Angew. Chem. Int. Ed. 2003; 42: 5711
    • 11a Guo HC, Wang XW, Ding K.-L. Tetrahedron Lett. 2004; 45: 2009
    • 11b Ding K.-L, Wang Z, Wang WW, Liang YX, Wang XS. Chem. Eur. J. 2006; 12: 5188
  • 12 Yamada YM. A, Ichinohe M, Takahashi H, Ikegami S. Tetrahedron Lett. 2002; 43: 3431
  • 13 Liu X, Bai SY, Yang Y, Li B, Xiao B, Li C, Yang QH. Chem. Commun. 2012; 48: 3191
  • 14 Corey EJ, Barnes-Seeman D, Lee TW, Goodman SN. Tetrahedron Lett. 1997; 38: 6513
  • 15 Johannsen M, Jørgensen KA. J. Org. Chem. 1995; 60: 5757
    • 16a Evans DA, Burgey CS, Paras NA, Vojkovsky T, Tregay SW. J. Am. Chem. Soc. 1998; 120: 5824
    • 16b Evans DA, Tregay SW, Burgey CS, Paras NA, Vojkovsky T. J. Am. Chem. Soc. 2000; 122: 7936
  • 17 Pandey MK, Bisai A, Singh VK. Tetrahedron Lett. 2006; 47: 897
  • 18 Kim M, Jeong HS, Yeom C.-E, Kim BM. Tetrahedron: Asymmetry 2012; 23: 1019
  • 19 Evans DA, Wu J. J. Am. Chem. Soc. 2005; 127: 8006
    • 20a Zhao J.-F, Tjan T.-BW, Loh T.-P. Tetrahedron Lett. 2010; 51: 5649
    • 20b Zhao J.-F, Tsui H.-Y, Wu P.-J, Lu J, Loh T.-P. J. Am. Chem. Soc. 2008; 130: 16492
  • 21 Kezuka S, Ikeno T, Yamada T. Org. Lett. 2001; 3: 1937
  • 22 Hutson GE, Dave AH, Rawal VH. Org. Lett. 2007; 9: 3869
  • 23 Chaładaj W, Kwiatkowski P, Majer J, Jurczak J. Tetrahedron Lett. 2007; 48: 2405
    • 24a Zheng K, Shi J, Liu XH, Feng XM. J. Am. Chem. Soc. 2008; 130: 15770
    • 24b Zheng K, Liu XH, Qin S, Xie MS, Lin LL, Hu CW, Feng XM. J. Am. Chem. Soc. 2012; 134: 17564
    • 24c Zheng K, Yang Y, Zhao JN, Yin CK, Lin LL, Liu XH, Feng XM. Chem. Eur. J. 2010; 16: 9969
    • 24d Zheng K, Lin LL, Feng XM. Acta Chim. Sinica 2012; 70: 1785
    • 24e Zheng K, Yin CK, Liu XH, Lin LL, Feng XM. Angew. Chem. Int. Ed. 2011; 50: 2573
    • 24f Zheng K, Liu XH, Zhao JN, Yang Y, Lin LL, Feng XM. Chem. Commun. 2010; 46: 3771
    • 24g Chang L, Kuang YL, Qin B, Zhou X, Liu XH, Lin LL, Feng XM. Org. Lett. 2010; 12: 2214
    • 25a Liu XH, Lin LL, Feng XM. Acc. Chem. Res. 2011; 44: 574
    • 25b Liu XH, Lin LL, Feng XM. Org. Chem. Front. 2014; 1: 298
  • 26 Hao J, Hatano M, Mikami K. Org. Lett. 2000; 2: 4059
  • 27 Luo H.-K, Khim LB, Schumann H, Lim C, Jie TX, Yang HY. Adv. Synth. Catal. 2007; 349: 1781
  • 28 Mikami K, Aikawa K. Org. Lett. 2002; 4: 99
    • 29a Becker JJ, White PS, Gagné MR. J. Am. Chem. Soc. 2001; 123: 9478
    • 29b Luo H.-K, Schumann H. J. Mol. Catal. A: Chem. 2006; 248: 42
  • 30 Doherty S, Goodrich P, Hardacre C, Luo H.-K, Nieuwenhuyzen M, Rath RK. Organometallics 2005; 24: 5945
  • 31 Langner M, Rémy P, Bolm C. Synlett 2005; 781
    • 32a Zhao J.-F, Tjan T.-BW, Tan B.-H, Loh T.-P. Org. Lett. 2009; 11: 5714
    • 32b Zhao JF, Tan BH, Zhu MK, Tjan T.-BW, Loh T.-P. Adv. Synth. Catal. 2010; 352: 2085
  • 33 Aikawa K, Kainuma S, Hatano M, Mikami K. Tetrahedron Lett. 2004; 45: 183
  • 34 Luo H.-K, Woo Y.-L, Schumann H, Jacob C, van Meurs M, Yang H.-Y, Tan Y.-T. Adv. Synth. Catal. 2010; 352: 1356
    • 35a Doherty S, Knight JG, Smyth CH, Harrington RW, Clegg W. J. Org. Chem. 2006; 71: 9751
    • 35b Doherty S, Knight JG, Smyth CH, Harrington RW, Clegg W. Organometallics 2007; 26: 6453
    • 35c Doherty S, Knight JG, Mehdi-Zodeh H. Tetrahedron: Asymmetry 2012; 23: 209
  • 36 Wang T, Hao X.-Q, Huang J.-J, Niu J.-L, Gong J.-F, Song M.-P. J. Org. Chem. 2013; 78: 8712
  • 37 Clarke ML, Jones CE. S, France MB. Beilstein J. Org. Chem. 2007; 3: 24
  • 38 Rueping M, Theissmann T, Kuenkel A, Koenigs RM. Angew. Chem. Int. Ed. 2008; 47: 6798
  • 39 Drury III WJ, Ferraris D, Cox C, Young B, Lectka T. J. Am. Chem. Soc. 1998; 120: 11006
  • 40 Yao S, Fang XM, Jørgensen KA. Chem. Commun. 1998; 2547
  • 41 Caplan NA, Hancock FE, Page PC. B, Hutchings GJ. Angew. Chem. Int. Ed. 2004; 43: 1685
  • 42 Aburel PS, Zhuang W, Hazell RG, Jørgensen KA. Org. Biomol. Chem. 2005; 3: 2344
  • 43 Mikami K, Matsukawa S. J. Am. Chem. Soc. 1993; 115: 7039
    • 44a Ruck RT, Jacobsen EN. J. Am. Chem. Soc. 2002; 124: 2882
    • 44b Ruck RT, Jacobsen EN. Angew. Chem. Int. Ed. 2003; 42: 4771
    • 45a Mikami K, Kawakami Y, Akiyama K, Aikawa K. J. Am. Chem. Soc. 2007; 129: 12950
    • 45b Aikawa K, Mimura S, Numata Y, Mikami K. Eur. J. Org. Chem. 2011; 62
  • 46 Cele ZE. D, Sosibo SC, Andersson PG, Kruger HG, Maguire GE. M, Govender T. Tetrahedron: Asymmetry 2013; 24: 191
  • 47 Matsubara R, Kobayashi S. Acc. Chem. Res. 2008; 41: 292
    • 48a Matsubara R, Nakamura Y, Kobayashi S. Angew. Chem. Int. Ed. 2004; 43: 1679
    • 48b Matsubara R, Kobayashi S. Angew. Chem. Int. Ed. 2006; 45: 7993
    • 49a Matsubara R, Vital P, Nakamura Y, Kiyohara H, Kobayashi S. Tetrahedron 2004; 60: 9769
    • 49b Matsubara R, Nakamura Y, Kobayashi S. Angew. Chem. Int. Ed. 2004; 43: 3258
    • 49c Matsubara R, Kawai N, Kobayashi S. Angew. Chem. Int. Ed. 2006; 45: 3814
    • 49d Matsubara R, Doko T, Uetake R, Kobayashi S. Angew. Chem. Int. Ed. 2007; 46: 3047
  • 50 Berthiol F, Matsubara R, Kawai N, Kobayashi S. Angew. Chem. Int. Ed. 2007; 46: 7803
    • 51a Terada M, Machioka K, Sorimachi K. Angew. Chem. Int. Ed. 2006; 45: 2254
    • 51b Terada M, Machioka K, Sorimachi K. J. Am. Chem. Soc. 2007; 129: 10336
  • 52 Terada M, Soga K, Momiyama N. Angew. Chem. Int. Ed. 2008; 47: 4122
  • 53 Zu LS, Xie HX, Li H, Wang J, Yu XH, Wang W. Chem. Eur. J. 2008; 14: 6333
  • 54 Noole A, Borissova M, Lopp M, Kanger T. J. Org. Chem. 2011; 76: 1538
    • 55a Jensen KL, Dickmeiss G, Jiang H, Albrecht L, Jørgensen KA. Acc. Chem. Res. 2012; 45: 248
    • 55b Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
    • 55c Erkkilä A, Majander I, Pihko PM. Chem. Rev. 2007; 107: 5416
  • 56 Gotoh H, Masui R, Ogino H, Shoji M, Hayashi Y. Angew. Chem. Int. Ed. 2006; 45: 6853