RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2014; 25(15): 2196-2200
DOI: 10.1055/s-0034-1378540
DOI: 10.1055/s-0034-1378540
letter
Microwave-Assisted Palladium-Catalyzed Allylation of β-Enaminones
Weitere Informationen
Publikationsverlauf
Received: 12. Juni 2014
Accepted after revision: 26. Juni 2014
Publikationsdatum:
31. Juli 2014 (online)
Abstract
A new palladium-catalyzed approach for the C-allylation of β-enaminones under microwave irradiation is reported. This methodology provides an easy access to a variety of α-allylated enaminones. The reaction takes place with the preservation of the enamine function, which is poised for further transformations towards nitrogen-containing heterocycles.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000083.
- Supporting Information
-
References and Notes
- 1a Beller M, Bolm C. Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals. Weinheim: Wiley-VCH; 2004. 2nd ed.: Vol. 1 and 2:
- 1b Negishi E. Handbook of Organopalladium Chemistry for Organic Synthesis. Wiley-Interscience; New York: 2002
- 1c Tsuji J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis. Wiley; New York: 2004
- 1d Diederich F, de Meijere A. Metal-Catalyzed Cross-Coupling Reactions. Wiley-VCH; Weinheim: 2004. 2nd ed
- 2a Trost BM, Vranken DL. V. Chem. Rev. 1996; 96: 395
- 2b Trost BM. Chem. Pharm. Bull. 2002; 50: 1
- 2c Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
- 2d Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
- 3 Poli G, Prestat G, Liron F, Kammerer-Pentier C In Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis. Kazmaier U. Top. Organomet. Chem. 2012. 38. 1
- 4 Tsuji J, Takahashi H, Morikawa M. Tetrahedron Lett. 1965; 6: 4387
- 5a Ibrahem I, Córdova A. Angew. Chem. Int. Ed. 2006; 45: 1952
- 5b Bihelovic F, Matovic R, Vulovic B, Saicic RN. Org. Lett. 2007; 9: 5063
- 5c Liu D, Xie F, Zhang W. Tetrahedron Lett. 2007; 48: 7591
- 5d Mukherjee S, List B. J. Am. Chem. Soc. 2007; 129: 11336
- 5e Zhao X, Liu D, Xie F, Zhang W. Tetrahedron 2009; 65: 512
- 5f Usui I, Schmidt S, Breit B. Org. Lett. 2009; 11: 1453
- 5g Vulovic B, Bihelovic F, Matovic R, Saicic RN. Tetrahedron 2009; 65: 10485
- 5h Zhao X, Liu D, Xie F, Liu Y, Zhang W. Org. Biomol. Chem. 2011; 9: 1871
- 5i Afewerki S, Ibrahem I, Rydfjord J, Breistein P, Córdova A. Chem. Eur. J. 2012; 18: 2972
- 5j Li M, Datta S, Barber DM, Dixon DJ. Org. Lett. 2012; 14: 6350
- 5k Jiang G, List B. Angew. Chem. Int. Ed. 2011; 50: 9471
- 6a Gigant N, Gillaizeau I. Org. Lett. 2012; 14: 3304
- 6b Gigant N, Chausset-Boissarie L, Rey-Rodriguez R, Gillaizeau I. C. R. Chim. 2013; 16: 358
- 7a Kammerer C, Prestat G, Madec D, Poli G. Chem. Eur. J. 2009; 15: 4224
- 7b Vogel S, Bantreil X, Maitro G, Prestat G, Madec D, Poli G. Tetrahedron Lett. 2010; 51: 1459
- 7c Bantreil X, Prestat G, Moreno A, Madec D, Fristrup P, Norrby PO, Pregosin PS, Poli G. Chem. Eur. J. 2011; 17: 2885
- 7d Boutier A, Kammerer-Pentier C, Krause N, Prestat G, Poli G. Chem. Eur. J. 2012; 18: 3840
- 7e Giboulot S, Liron F, Prestat G, Wahl B, Sauthier M, Castanet Y, Mortreux A, Poli G. Chem. Commun. 2012; 48: 5889
- 7f Lorion MM, Gasperini D, Oble J, Poli L. Org. Lett. 2013; 15: 3050
- 7g Rajabi J, Lorion MM, Linh LyV, Liron F, Oble J, Prestat G, Poli G. Chem. Eur. J. 2014; 20: 1539
- 7h Mistico L, Ay E, Huynh V, Bourderioux A, Chaumeil H, Chemla F, Ferreira F, Oble J, Pérez-Luna A, Poli G, Prestat G. J. Organomet. Chem. 2014; 760: 124
- 7i Rigamonti M, Prestat G, Broggini G, Poli G. J. Organomet. Chem. 2014; 760: 149
- 7j Liron F, Oble J, Lorion MM, Poli G. Eur. J. Org. Chem. 2014; in press; DOI: 10.1002/ejoc.201402049
- 8 During the redaction of this manuscript, a related study dealing with the Pd-catalyzed cyclization of N-tosyl-substituted β-enaminocarbonyl compounds with allylic bisacetates was reported, see: Yoshida M, Kinoshita K, Namba K. Org. Biomol. Chem. 2014; 12: 2394 ; according to the authors, the corresponding N-benzylated substrates did not react under their reaction conditions
- 9a Elassar A.-ZA, El-Khair AA. Tetrahedron 2003; 59: 8463
- 9b Negri G, Kascheres AJ. J. Heterocycl. Chem. 2004; 41: 461
- 9c Stanovnik B, Steve J. Chem. Rev. 2004; 2433
- 9d Ferraz HM. C, Goncalo ER. S. Quim. Nova 2007; 30: 957
- 9e Govindh B, Diwakar BS. Murthy Y. L. N. Org. Commun. 2012; 5: 105
- 10a Iida H, Yuasa Y, Kibayashi C. J. Org. Chem. 1980; 45: 2938
- 10b Kasahara A, Izumi T, Murakami S, Yanai H, Takatori M. Bull. Chem. Soc. Jpn. 1986; 59: 927
- 10c Sakamoto T, Nagano T, Kondo Y, Yamanaka H. Synthesis 1990; 215
- 10d Michael JP, Chang S.-F, Wilson C. Tetrahedron Lett. 1993; 34: 8365
- 10e Koerber-Plé K, Massiot G. Synlett 1994; 759
- 10f Chen L.-C, Yang S.-C, Wang H.-M. Synthesis 1995; 385
- 10g Latham EJ, Stanfoth SP. Chem. Commun. 1996; 2253
- 10h Latham EJ, Stanfoth SP. J. Chem. Soc., Perkin Trans. 1 1997; 2059
- 10i Blache Y, Sinibaldi-Troin M.-E, Voldoire A, Chavignon O, Gramain J.-C, Teulade J.-C, Chapat J.-P. J. Org. Chem. 1997; 62: 8553
- 10j Kirschbaum S, Waldmann H. J. Org. Chem. 1998; 63: 4936
- 10k Edmonson SD, Mastracchio A, Parmee ER. Org. Lett. 2000; 2: 1109
- 10l Yamazaki K, Kondo Y. J. Comb. Chem. 2002; 4: 191
- 10m Yamazaki K, Nakamura Y, Kondo Y. J. Org. Chem. 2003; 68: 6011
- 10n Sorensen US, Pombo-Villar E. Helv. Chim. Acta 2004; 87: 82
- 10o Dajka-Halász B, Monsieurs K, Eliás O, Károlyházy L, Tapolcsányi P, Maes BU. W, Riedl Z, Hajós G, Dommisse RA, Lemière GL. F, Košmrlj J, Mátyus P. Tetrahedron 2004; 60: 2283
- 10p Gu Z.-Y, Zhu T.-H, Cao J.-J, Xu X.-P, Wang S.-Y, Ji S.-J. ACS Catal. 2014; 4: 49
- 10q Yan S, Wu H, Wu N, Jiang Y. Synlett 2007; 2699
- 10r Cacchi S, Fabrizi G, Filisti E. Org. Lett. 2008; 10: 2629
- 10s Bernini R, Fabrizi G, Cacchi S. Angew. Chem. Int. Ed. 2009; 48: 8078
- 10t Guan Z.-H, Ren Z.-Y, Liu X.-Y, Liang Y.-M. Chem. Commun. 2010; 46: 2823
- 10u Arcadi A, Di Giuseppe S, Marinelli F, Rossi E. Tetrahedron: Asymmetry 2001; 12: 2715
- 10v Saito A, Konishi T, Hanzawa Y. Org. Lett. 2010; 12: 372
- 11 Bromidge SM, Entwistle DA, Goldstein J, Orlek BS. Synth. Commun. 1993; 23: 487
- 12 In order to avoid the hydrolysis of the unreacted starting material and/or the product, the yields were determined by 1H NMR spectroscopy of the crude mixture (obtained after rapid filtration on silica gel and evaporation) using 1,3,5-trimethoxybenzene as internal standard.
- 13 In general, the allylated product 2a was obtained with an average 1:1 E/Z ratio (determined by 1H NMR spectroscopy of the crude mixture). This ratio is variable and can change during silica gel purification.
- 14 For a recent review, see: Caddick S, Fitzmaurice R. Tetrahedron 2009; 65: 3325
- 15 See Supporting Information.
- 16 When the reaction was carried out without either the precatalyst/ligand system or the precatalyst, only unreacted enaminone 1a was recovered with traces of the corresponding imino–enol tautomer 1a′ (see Supporting Information).
- 17 General Procedure To a suspension of Pd(OAc)2 (13 mg, 0.057 mmol, 10 mol%), dppf (35 mg, 0.063 mmol, 11 mol%), and proton sponge (0.12 g, 0.57 mmol, 1 equiv) in THF (0.5 mL) in a Schlenk flask equipped with a septum, under argon atmosphere, was added allyl acetate (0.12 mL, 1.14 mmol, 2.0 equiv). After 5 min stirring, a solution of enaminone 1a (100 mg, 0.57 mmol, 1 equiv) in THF (0.5 mL) was added, the flask was sealed, and the mixture was stirred during 1 h under microwave irradiation at 100 °C. The resulting crude was filtered on a plug of silica gel. The solvent was removed, and the mixture was purified by flash chromatography on silica gel (EtOAc–cyclohexane, 20:80) to afford 86 mg of the allylated enaminone 2a as a mixture of Z and E isomers. Analytical Data for Compound 2a Yield 60%; yellow oil; Z/E ratio = 1.7:1 (analysis of the crude 1H NMR spectrum showed a Z/E ratio of 1:1). IR (film): 3272, 3030, 2920, 1638 cm–1. 1H NMR (300 MHz, CDCl3): δ = 10.24 [br s, 1 H, NH(Z)], 7.42–7.25 [m, 11 H, =CHNH(E) + CH Ar(Z+E)], 6.66 [d, J = 12.4 Hz, 1 H, =CHNH(Z)], 5.94–5.71 [m, 2 H, HC=CH2(Z+E)], 5.10–4.99 (m, 4 H, HC=CH2(Z+E)], 4.43 (d, J = 5.9 Hz, 2 H, CH 2 Ph(E)], 4.39 (d, J = 6.1 Hz, 2 H, CH 2 Ph(Z)], 3.12 [dt, J = 6.0, 1.6 Hz, 2 H, CH 2 CH=CH2(E)], 2.94 [dt, J = 5.8, 1.6 Hz, 2 H, CH 2 CH=CH2(Z)], 2.22 (s, 3 H, CH3CO(E)], 2.13 (s, 3 H, CH 3 CO(Z)]. 13C NMR (75 MHz, CDCl3): δ = 198.2, 194.2, 153.0, 149.5, 138.6, 138.5, 138.4, 136.0, 128.9, 128.8, 127.8, 127.6, 127.0, 126.9, 114.8, 114.6, 102.8, 52.5, 52.2, 35.6, 28.0, 27.6, 24.4. HRMS: m/z calcd for C14H17NONa [M + Na]+: 238.1208; found: 238.1204.
- 18 Formation of the linear product, when using cinnamyl acetate, is a further proof of the direct C-allylation mechanism.
For reviews, see:
For examples of Pd-catalyzed enamine allylations, see:
For examples of Pd-catalyzed C-alkenylation of enamides with conservation of the nitrogen atom, see:
For recent examples, see:
For reviews, see:
For some selected Pd-catalyzed reactions, see:
For some selected Cu-catalyzed reactions, see:
For Fe-catalyzed reactions, see:
For Au-catalyzed reactions, see: