Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2014; 46(23): 3207-3212
DOI: 10.1055/s-0034-1378617
DOI: 10.1055/s-0034-1378617
paper
Domino Reaction of 2,2-Dihydroxyindene-1,3-dione with Aromatic Amines: Efficient Synthesis of Isochromeno[4,3-b]indol-5(11H)-one Derivatives
Further Information
Publication History
Received: 15 April 2014
Accepted after revision: 17 July 2014
Publication Date:
21 August 2014 (online)
Abstract
An efficient approach to 16 examples of polyfunctionalized isochromeno[4,3-b]indol-5(1H)-one derivatives, obtained in 60–85% yield and with excellent regioselectivity, has been developed through a domino reaction of 2,2-dihydroxyindene-1,3-dione with aromatic amines under microwave irradiation. The atom- and step-economy and scope make this reaction a powerful tool for assembling polyheterocyclic scaffolds of general chemical and biomedical interest.
Key words
domino reactions - heterocycles - cyclizations - regioselectivity - isochromeno[4,3-b]indol-5(11H)-one - 2,2-dihydroxyindene-1,3-dione - aromatic aminesSupporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000084.
- Supporting Information
-
References
- 1 These authors contributed equally to this work.
- 2a Matsuda H, Shimoda H, Yoshikawa M. Bioorg. Med. Chem. 1999; 7: 1445
- 2b Yoshikawa M, Harada E, Naitoh Y, Inoue K, Matsuda H, Shimoda H, Yamahara J, Murakami N. Chem. Pharm. Bull. 1994; 42: 2225
- 3 Matsuda H, Shimoda H, Yamahara J, Yoshikawa M. Bioorg. Med. Chem. Lett. 1998; 8: 215
- 4 Whyte AC, Gloer JB, Scoot JA, Mallock D. J. Nat. Prod. 1996; 59: 765
- 5 Nozawa K, Yamada M, Tsuda Y, Kawai K, Nakajima S. Chem. Pharm. Bull. 1981; 29: 2689
- 6 Furuta T, Fukuyama Y, Asakawa Y. Phytochemistry 1986; 25: 517
- 7 Lee JH, Park YJ, Kim HS, Hong YS, Kim KW. Antibiotics 2001; 54: 463
- 8 Chinworungsee M, Kittakoop P, Isaka M, Chanphen R, Tanticharoen M, Thebtaranonth YJ. J. Chem. Soc., Perkin Trans. 1 2002; 34: 2473
- 9a Shimizu M, Hirano K, Satoh T, Miura M. J. Org. Chem. 2009; 74: 3478
- 9b Ueura T, Satoh T, Miura M. Org. Lett. 2007; 9: 1407
- 9c Ueura K, Satoh T, Miura M. J. Org. Chem. 2007; 72: 5362
- 10a Zhao P, Chen D, Song G, Han K, Li X. J. Org. Chem. 2012; 77: 1579
- 10b Zeni G, Larock RC. Chem. Rev. 2004; 104: 2285
- 10c Larock RC, Doty MJ, Han X. J. Org. Chem. 1999; 64: 8770
- 10d Larock RC, Yum EK, Doty MJ, Sham KK. C. J. Org. Chem. 1995; 60: 3270
- 11a Chinnagolla RK, Jeganmohan M. Chem. Commun. 2012; 2030
- 11b Ackermann L, Pospech J, Graczyk K, Rauch K. Org. Lett. 2012; 14: 930
- 12a Guo X.-X. J. Org. Chem. 2013; 78: 1660
- 12b Kavala V, Wang C.-C, Barange DK, Kuo C.-W, Lei P.-M, Yao C.-F. J. Org. Chem. 2012; 77: 5022
- 13 Bullington JL, Dodd JH. J. Org. Chem. 1993; 58: 4833
- 14a Jiang B, Rajale T, Walter W, Tu S.-J, Li G. Chem. Asian J. 2010; 5: 2318
- 14b Tietze LF, Haunert F. Domino Reaction in Organic Synthesis . In Stimulating Concepts in Chemistry . Part I. Vögtle F, Stoddart JF, Shibasaki M. Wiley-VCH; Weinheim: 2000. Chap. 4, 39-64
- 14c Tietze LF, Brasche G, Gericke KM. Domino Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2006
- 14d Multicomponent Reactions . Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005
- 14e Tietze LF, Kinzel T, Brazel CC. Acc. Chem. Res. 2009; 42: 367
- 15a Fan W, Ye Q, Xu H.-W, Jiang B, Wang S.-L, Tu S.-J. Org. Lett. 2013; 15: 2258
- 15b Jiang B, Fan W, Sun M.-Y, Ye Q, Wang S.-L, Tu S.-J, Li G. J. Org. Chem. 2014; 79: 5258
- 15c Jiang B, Wang X, Xu H.-W, Tu M.-S, Tu S.-J, Li G. Org. Lett. 2013; 15: 1540
- 15d Jiang B, Feng B.-M, Wang S.-L, Tu S.-J, Li G. Chem. Eur. J. 2012; 18: 9823
- 15e Li T.-J, Yin H.-M, Yao C.-S, Wang X.-S, Jiang B, Tu S.-J, Li G. Chem. Commun. 2012; 11966
- 16 Bihel F, Quéléver G, Lelouard H, Petit A, Alvès da Costa C, Pourquié O, Checler F, Thellend A, Pierree P, Krausa J.-L. Bioorg. Med. Chem. 2003; 11: 3141
- 17 The single crystal growth was obtained from EtOH–DMF at room temperature. Crystal data for 3m: C16H11NO2, crystal dimension 0.25 × 0.09 × 0.06 mm, monoclinic, space group P2(1)/c, a = 8.6422(7) Å, b = 7.4618(5) Å, c = 18.7810(16) Å, β = 92.3390(10)°, V = 1210.11(16) Å3, Mr = 249.26, Z = 4, λ = 0.71073 Å, μ (Mo Kα) = 0.736 mm–1, F(000) = 520, R 1 = 0.0877, wR 2 = 0.2254. CCDC 1019219 contains the supplementary crystallographic data for 3m. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 18a Shapiro R, Chatterjie N. J. Org. Chem. 1970; 35: 447
- 18b Poupelin JP, Saint-Ruf G, Perche JC, Lacroix R, Uchida-Ernouf G, Narcisse G, Hubert F. Eur. J. Med. Chem. 1979; 14: 171
- 18c Poupelin JP, Saint-Ruf G, Perche JC, Roussey JC, Laude B, Narcisse G, Bakri-Logeais F, Hubert F. Eur. J. Med. Chem. 1980; 15: 253
- 18d Jiang B, Li Q.-Y, Tu S.-J, Li G. Org. Lett. 2012; 14: 5210
- 19 Holland JM, Jones DW. J. Chem. Soc. C 1970; 530