Synlett, Table of Contents Synlett 2015; 26(09): 1233-1237DOI: 10.1055/s-0034-1378691 letter © Georg Thieme Verlag Stuttgart · New York Rhodium-Catalyzed Addition–Spirocyclization of Arylboronic Esters Containing β-Aryl α,β-Unsaturated Ester Moiety Takanori Matsuda* Department of Applied Chemistry, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan Email: mtd@rs.tus.ac.jp , Satoshi Yasuoka Department of Applied Chemistry, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan Email: mtd@rs.tus.ac.jp , Shoichi Watanuki Department of Applied Chemistry, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan Email: mtd@rs.tus.ac.jp , Keisuke Fukuhara Department of Applied Chemistry, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan Email: mtd@rs.tus.ac.jp › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract In this study, we developed a rhodium(I)-catalyzed spirocyclization. The reaction includes 1,4-rhodium migration and provides a route for forming spirocyclic 1-indanones. Key words Key wordsaddition - boron - cyclization - rhodium - spiro compounds Full Text References References and Notes For reviews, see: 1a Ma S, Gu Z. Angew. Chem. Int. Ed. 2005; 44: 7512 1b Shi F, Larock R. Top. Curr. Chem. 2010; 292: 123 2a Oguma K, Miura M, Satoh T, Nomura M. J. Am. Chem. Soc. 2000; 122: 10464 2b Matsuda T, Shigeno M, Murakami M. J. Am. Chem. Soc. 2007; 129: 12086 2c Sasaki K, Nishimura T, Shintani R, Kantchev EA. B, Hayashi T. Chem. Sci. 2012; 3: 1278 2d Sasaki K, Hayashi T. Tetrahedron: Asymmetry 2012; 23: 373 2e Prakash P, Jijy E, Shimi M, Aparna PS, Suresh E, Radhakrishnan KV. RSC Adv. 2013; 3: 19933 2f Shintani R, Iino R, Nozaki K. J. Am. Chem. Soc. 2014; 136: 7849 3a Hayashi T, Inoue K, Taniguchi N, Ogasawara M. J. Am. Chem. Soc. 2001; 123: 9918 3b Miura T, Sasaki T, Nakazawa H, Murakami M. J. Am. Chem. Soc. 2005; 127: 1390 3c Shintani R, Okamoto K, Hayashi T. J. Am. Chem. Soc. 2005; 127: 2872 3d Yamabe H, Mizuno A, Kusama H, Iwasawa N. J. Am. Chem. Soc. 2005; 127: 3248 3e Shintani R, Hayashi T. Org. Lett. 2005; 7: 2071 3f Shintani R, Tsurusaki A, Okamoto K, Hayashi T. Angew. Chem. Int. Ed. 2005; 44: 3909 3g Miura T, Shimada M, Murakami M. Chem. Asian J. 2006; 1: 868 3h Shintani R, Takatsu K, Hayashi T. Angew. Chem. Int. Ed. 2007; 46: 3735 3i Shintani R, Takatsu K, Katoh T, Nishimura T, Hayashi T. Angew. Chem. Int. Ed. 2008; 47: 1447 3j Seiser T, Roth OA, Cramer N. Angew. Chem. Int. Ed. 2009; 48: 6320 3k Shigeno M, Yamamoto T, Murakami M. Chem. Eur. J. 2009; 15: 12929 3l Seiser T, Cramer N. Chem. Eur. J. 2010; 16: 3383 3m Shintani R, Isobe S, Takeda M, Hayashi T. Angew. Chem. Int. Ed. 2010; 49: 3795 3n Seiser T, Cathomen G, Cramer N. Synlett 2010; 1699 3o Shintani R, Hayashi T. Org. Lett. 2011; 13: 350 3p Ishida N, Nečas D, Shimamoto Y, Murakami M. Chem. Lett. 2013; 42: 1076 3q Matsuda T, Watanuki S. Org. Biomol. Chem. 2015; 13: 702 4 Matsuda T, Suda Y, Takahashi A. Chem. Commun. 2012; 48: 2988 For analogous 1,3- and 1,5-rhodium migrations, see: 5a Tobisu M, Hasegawa J, Kita Y, Kinuta H, Chatani N. Chem. Commun. 2012; 48: 11437 5b Zhang J, Zhao P, Liu J.-F, Ugrinov A, Pillai AF. X, Sun Z.-M. J. Am. Chem. Soc. 2013; 135: 17270 5c Ishida N, Shimamoto Y, Yano T, Murakami M. J. Am. Chem. Soc. 2013; 135: 19103 6 The corresponding intermolecular reaction was reported, see ref. 3o. For general reviews on rhodium(I)-catalyzed addition reactions of arylboronic acids, see: 7a Hayashi T, Yamasaki K. Chem. Rev. 2003; 103: 2829 7b Miura T, Murakami M. Chem. Commun. 2007; 217 7c Youn SW. Eur. J. Org. Chem. 2009; 2597 7d Edwards HJ, Hargrave JD, Penrose SD, Frost CG. Chem. Soc. Rev. 2010; 39: 2093 7e Tian P, Dong H.-Q, Lin G.-Q. ACS Catal. 2012; 2: 95 8a Lautens M, Mancuso J. Org. Lett. 2002; 4: 2105 8b Lautens M, Mancuso J. J. Org. Chem. 2004; 69: 3478 8c Shintani R, Okamoto K, Hayashi T. Chem. Lett. 2005; 34: 1294 8d Miura T, Murakami M. Org. Lett. 2005; 7: 3339 8e Matsuda T, Makino M, Murakami M. Chem. Lett. 2005; 34: 1416 8f Matsuda T, Shigeno M, Makino M, Murakami M. Org. Lett. 2006; 8: 3379 8g Tseng N.-W, Lautens M. J. Org. Chem. 2009; 74: 1809 8h Shimizu H, Igarashi T, Murakami M. Bull. Korean Chem. Soc. 2010; 31: 1461 8i Gourdet B, Rudkin ME, Lam HW. Org. Lett. 2010; 12: 2554 8j Low DW, Pattison G, Wieczysty MD, Churchill GH. Org. Lett. 2012; 14: 2548 8k Yu Y.-N, Xu M.-H. J. Org. Chem. 2013; 78: 2736 9 Gallego GM, Sarpong R. Chem. Sci. 2012; 3: 1338 10 Substrates 1 and 4 were synthesized by the Horner–Wadsworth–Emmons reaction of the corresponding ketones, which were prepared according to the literature methods. 11a Zhang N, Hoffman DJ, Gutsche N, Gupta J, Percec V. J. Org. Chem. 2012; 77: 5956 11b Lennox AJ. J, Lloyd-Jones GC. Chem. Soc. Rev. 2014; 43: 412 12 (E)-Methyl 5-[2-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)phenyl]-3-phenylpent-2-enoate (4a): White solid; mp 104–105 °C; 1H NMR (CDCl3, 301 MHz): δ = 0.98 (s, 6 H), 3.01–3.09 (m, 2 H), 3.31–3.40 (m, 2 H), 3.65 (s, 4 H), 3.78 (s, 3 H), 6.08 (s, 1 H), 7.15–7.22 (m, 1 H), 7.32–7.42 (m, 5 H), 7.51–7.57 (m, 2 H), 7.71–7.76 (m, 1 H). 13C NMR (CDCl3, 75.6 MHz): δ = 21.8, 31.5, 34.8, 35.2, 51.1, 72.0, 116.9, 125.1, 126.9, 128.4, 128.7, 129.9, 130.3, 134.8, 141.6, 147.6, 160.8, 166.7. HRMS (ESI) calcd for C23H27BNaO4 [M + Na]+ 401.1895; found: 401.1895. IR: 2960, 1712, 1301, 1161, 766 cm−1. General Procedure for Rhodium-Catalyzed Spirocyclization of Arylboronic Esters: To a Schlenk tube under nitrogen were added [Rh(OH)(cod)]2 (1.2 mg, 2.6 μmol, 5 mol% Rh), 1,2-bis(diphenylphosphino)benzene (DPPBZ, 2.3 mg, 5.2 μmol), arylboronic ester 4 (0.100 mmol), and xylene (1.0 mL). The solution was stirred for 5 min. at rt, and the mixture was heated at 140 °C for 2 h. After cooling to r.t., the reaction mixture was filtered through a plug of Florisil® washing with hexane–EtOAc (3:1), and the filtrate was concentrated. The residue was purified by preparative TLC on silica gel (hexane–EtOAc) to afford 2. 1,1′-Spirobi[indan]-3-one (2a): According to the general procedure, 4a (37.9 mg, 0.100 mmol), [Rh(OH)(cod)]2 (1.2 mg, 2.6 μmol), and DPPBZ (2.3 mg, 5.2 μmol) were treated in xylene (1.0 mL). Purification by preparative TLC on silica gel afforded 2a (19.7 mg, 0.084 mmol, 84%) as a colorless oil. 1H NMR (CDCl3, 300 MHz): δ = 2.37 (ddd, J = 12.7, 7.0, 5.5 Hz, 1 H), 2.52 (dt, J = 12.8, 8.2 Hz, 1 H), 2.85 (d, J = 18.9 Hz, 1 H), 3.00 (d, J = 18.9 Hz, 1 H), 3.10–3.20 (m, 2 H), 6.78 (d, J = 7.2 Hz, 1 H), 7.14 (dt, J = 0.8, 7.4 Hz, 1 H), 7.21 (dd, J = 7.3, 1.0 Hz, 1 H), 7.23–7.29 (m, 1 H), 7.32 (d, J = 7.2 Hz, 1 H), 7.37–7.46 (m, 1 H), 7.54– 7.62 (m, 1 H), 7.75–7.82 (m, 1 H); 13C NMR (CDCl3, 75.5 MHz): δ = 31.3, 42.9, 52.4, 54.5, 122.8, 123.1, 124.6, 125.1, 127.2, 127.3, 127.9, 135.4, 136.1, 143.3, 148.9, 161.5, 205.7. HRMS (ESI) calcd for C17H14NaO [M + Na]+ 257.0937; found: 257.0937. IR: 2948, 1716, 1602, 1236, 758 cm–1. 13 Asymmetric reaction: 4a (37.8 mg, 0.100 mmol), [Rh(OH)(cod)]2 (1.1 mg, 2.4 μmol), and (R)-BINAP (3.1 mg, 5.0 μmol) were reacted in xylene (1.0 mL) at 140 °C. Purification by preparative TLC on silica gel yielded 2a (10.1 mg, 0.043 mmol, 43%); 52% ee determined by HPLC analysis (CHIRALCEL® OJ-H column, hexane–i-PrOH (90:10), 1.0 mL/min, t minor = 7.7 min, t major = 10.0 min). Supplementary Material Supplementary Material Supporting Information