Synthesis 2015; 47(16): 2391-2406
DOI: 10.1055/s-0034-1378704
special topic
© Georg Thieme Verlag Stuttgart · New York

Exploitation of the Ugi–Joullié Reaction in the Synthesis of Libraries of Drug-Like Bicyclic Hydantoins

James D. Firth
a   School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
,
Rong Zhang
a   School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
,
Rémy Morgentin
b   Edelris, 115 Avenue Lacassagne, 69003 Lyon, France
,
Rachel Guilleux
b   Edelris, 115 Avenue Lacassagne, 69003 Lyon, France
,
Tuomo Kalliokoski
c   Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
,
Stuart Warriner
a   School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
d   Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK   Email: a.s.nelson@leeds.ac.uk
,
Richard Foster
a   School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
d   Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK   Email: a.s.nelson@leeds.ac.uk
,
Stephen P. Marsden
a   School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
,
Adam Nelson*
a   School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
d   Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK   Email: a.s.nelson@leeds.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 30 March 2015

Accepted: 16 April 2015

Publication Date:
19 June 2015 (online)


Abstract

A general and efficient method for the synthesis of drug-like fused bicyclic hydantoins is reported. An Ugi–Joullié reaction/cyclisation sequence was exploited as the key complexity-generating process in which trifluoroacetic acid was employed as synthetic equivalent for chloroformic acid. Exemplar diversification of the bicyclic scaffolds was performed to enable subsequent translation to the synthesis of large small molecule libraries, leading to the production of >1000 compounds for addition to the screening collection of the European Lead Factory.

Supporting Information

 
  • References

    • 1a Lipinski CA. Drug Discovery Today 2004; 1: 337
    • 1b Walters WP, Green J, Weiss JR, Murcko MA. J. Med. Chem. 2011; 54: 6405
    • 1c Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL. Nat. Chem. 2012; 4: 90
    • 1d Teague SJ, Davis AM, Leeson PD, Oprea T. Angew. Chem. Int. Ed. 1999; 38: 3743
    • 2a Wenlock MC, Austin RP, Barton P, Davis AM, Leeson PD. J. Med. Chem. 2003; 46: 1250
    • 2b Waring MJ. Bioorg. Med. Chem. Lett. 2009; 19: 2844
    • 3a Leeson PD, Springthorpe B. Nat. Rev. Drug Discovery 2007; 6: 881
    • 3b Ritchie TJ, Macdonald SJ. F. Drug Discovery Today 2009; 14: 1011
    • 4a Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
    • 4b Lovering F. MedChemComm 2013; 4: 515
  • 5 Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 6a Bienaymé H, Hulme C, Oddon G, Schmitt P. Chem. Eur. J. 2000; 6: 3321
    • 6b Ugi I, Heck S. Comb. Chem. High Throughput Screen. 2001; 4: 1
    • 6c Ugi I, Werner B, Dömling A. Molecules 2003; 8: 53
  • 7 Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Adv. Drug Deliv. Rev. 1997; 23: 3
    • 8a Nutt RF, Joullie MM. J. Am. Chem. Soc. 1982; 104: 5852
    • 8b Bowers MM, Carroll P, Joullie MM. J. Chem. Soc., Perkin Trans. 1 1989; 857
    • 9a Koopmanschap G, Ruijter E, Orru RV. A. Beilstein J. Org. Chem. 2014; 10: 544
    • 9b Rossen K, Sager J, DiMichele LM. Tetrahedron Lett. 1997; 38: 3183
    • 9c Chapman TM, Davies IG, Gu B, Block TM, Scopes DI. C, Hay PA, Courtney SM, McNeill LA, Schofield CJ, Davis BG. J. Am. Chem. Soc. 2004; 127: 506
    • 9d Nenajdenko VG, Gulevich AV, Balenkova ES. Tetrahedron 2006; 62: 5922
    • 9e Banfi L, Basso A, Cerulli V, Rocca V, Riva R. Beilstein J. Org. Chem. 2011; 7: 976
    • 9f Xia L, Li S, Chen R, Liu K, Chen X. J. Org. Chem. 2013; 78: 3120
    • 10a Hulme C, Ma L, Romano JJ, Morton G, Tang S.-Y, Cherrier M.-P, Choi S, Salvino J, Labaudiniere R. Tetrahedron Lett. 2000; 41: 1889
    • 10b Ignacio JM, Macho S, Marcaccini S, Pepino R, Torroba T. Synlett 2005; 3051
    • 10c Sañudo M, García-Valverde M, Marcaccini S, Torroba T. Tetrahedron 2012; 68: 2621
    • 10d Brockmeyer F, Kröger D, Stalling T, Ullrich P, Martens J. Helv. Chim. Acta 2012; 95: 1857
  • 11 Compton RG, Bamford CH, Tipper CF. H. Decomposition and Isomerization of Organic Compounds . Elsevier; Amsterdam: 1971: 400
  • 12 James T, Simpson I, Grant JA, Sridharan V, Nelson A. Org. Lett. 2013; 15: 6094
  • 13 Bower JF, Rujirawanich J, Gallagher T. Org. Biomol. Chem. 2010; 8: 1505
    • 14a Marion N, Ramón RS, Nolan SP. J. Am. Chem. Soc. 2008; 131: 448
    • 14b Au(IPr)Cl = Chloro[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]gold(I).
  • 15 Newman H. J. Org. Chem. 1965; 30: 1287
    • 16a Varia SA, Schuller S, Sloan KB, Stella VJ. J. Pharm. Sci. 1984; 73: 1068
    • 16b Sudo RT, Carmo PL. D, Trachez MM, Zapata-Sudo G. Basic Clin. Pharmacol. Toxicol. 2008; 102: 308
    • 16c Edmunds JJ, Klutchko S, Hamby JM, Bunker AM, Connolly CJ. C, Winters RT, Quin J, Sircar I, Hodges JC. J. Med. Chem. 1995; 38: 3759
  • 17 Use of EtOH as a solvent led to formation of a mixture of the desired trifluoroacetamides and the corresponding secondary amines; the presence of the phenyl substituent presumably slowed the Mumm rearrangement, which led to attack of the intermediate imidate by EtOH.
  • 18 CCDC-1054376 (zwitterion 16) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336 033; E-mail: deposit@ccdc.cam.ac.uk.
    • 19a European Lead Factory; https://www.europeanleadfactory.eu/ Accessed 09/02/2015.

    • For our related work on the ELF project, see:
    • 19b Craven P, Aimon A, Dow M, Fleury-Bregeot N, Guilleux R, Morgentin R, Roche D, Kalliokoski T, Foster R, Marsden SP, Nelson A. Bioorg. Med. Chem. 2015; 23: 2629