Synlett 2015; 26(13): 1819-1822
DOI: 10.1055/s-0034-1378724
letter
© Georg Thieme Verlag Stuttgart · New York

Novel Route to Thiophene-2,4-diamines

Hassan Zali-Boeini*
Department of Chemistry, University of Isfahan, 81746-73441, Isfahan, Iran   Email: h.zali@chem.ui.ac.ir
,
Negar Fadaei
Department of Chemistry, University of Isfahan, 81746-73441, Isfahan, Iran   Email: h.zali@chem.ui.ac.ir
› Author Affiliations
Further Information

Publication History

Received: 05 April 2015

Accepted after revision: 07 May 2015

Publication Date:
25 June 2015 (online)


Abstract

A novel and simple procedure for the construction of fully substituted thiophene-2,4-diamines using tertiary thioamides was developed. Thus, thioacetomorpholides undergo self-condensation to the corresponding 3,5-diarylthiophene-2,4-diamine derivatives in the presence of iodine and potassium carbonate in a suitable solvent and under mild conditions.

 
  • References and Notes

  • 1 Jagodzinski ST. Chem. Rev. 2003; 103: 197
  • 2 Gewald K, Schinke E, Böttcher H. Chem. Ber. 1966; 99: 94
    • 3a Matloubi Moghaddam F, Zali Boeini H. Tetrahedron Lett. 2003; 44: 6253
    • 3b Mohan C, Kumar V, Mahajan MP. Tetrahedron Lett. 2004; 45: 6075
    • 3c Majumdar KC, Ghosh M, Jana M, Saha D. Tetrahedron Lett. 2002; 43: 2111
  • 4 Matloubi Moghaddam F, Zali Boeini H. Tetrahedron 2004; 60: 6085
  • 5 Chupp JP. J. Heterocycl. Chem. 1970; 7: 285
  • 6 Rolfs A, Liebscher JJ. Chem. Soc., Chem. Commun. 1994; 1437
  • 7 Koike K, Jia Z, Nikaib T, Liu Y, Guo D. Org. Lett. 1999; 1: 197
    • 8a Jang SY, Sotzing GA. Macromolecules 2004; 37: 4351
    • 8b Brown JW, Lambe GJ, Foot PJ. S, Clipson JA. Macromol. Rapid Commun. 2004; 25: 1000
    • 8c Maynor BW, Filocamo SF, Grinstaff MW, Liu J. J. Am. Chem. Soc. 2002; 124: 522
    • 8d Zhang ZB, Fujiki M, Motonaga M, McKenna CE. J. Am. Chem. Soc. 2003; 125: 7878
    • 9a Noda T, Imae I, Noma N, Shirota Y. Adv. Mater. 1997; 9: 239
    • 9b Noda T, Ogawa H, Noma N, Shirota Y. Adv. Mater. 1997; 9: 720
    • 9c Mushrush M, Facchetti A, Lefenfeld M, Katz HE, Marks TJ. J. Am. Chem. Soc. 2003; 125: 9414
    • 9d Heeney M, Bailey C, Genevicius K, Shkunov M, Sparrowe D, Tierney S, McCulloch I. J. Am. Chem. Soc. 2005; 127: 1078
  • 10 Jarvest RL, Pinro IL, Asham SM, Dabrowsky GE, Fernandez AV, Jenning LG, Lavery P, Tew DG. Bioorg. Med. Chem. Lett. 1999; 9: 443
    • 11a Schwenk E, Papa D. J. Org. Chem. 1946; 11: 798
    • 11b Pedersen BS, Lawesson SO. Tetrahedron 1979; 35: 2433
    • 11c Thomsen I, Clausen K, Scheibye S, Lawesson SO. Org. Synth. 1984; 62: 158
    • 11d Yde B, Yousif NM, Pedersen U, Thomsen I, Lawesson SO. Tetrahedron 1984; 40: 2047
    • 12a Noda T, Imae I, Noma N, Shirota Y. Adv. Mater. 1997; 9: 239
    • 12b Noda T, Ogawa H, Noma N, Shirota Y. Adv. Mater. 1997; 9: 720
  • 13 General Procedure for the Synthesis of 3,5-Diarylthiophene-2,4-diamines To a stirred solution of thioacetomorpholide (2 mmol) in DMF (1 mL), I2 (1.1 mmol, 280 mg) and anhydrous K2CO3 (3 mmol, 415 mg) were added. The reaction mixture was heated at 65 °C and stirred for 120 min. Then the reaction mixture was poured in H2O (10 mL) and extracted with EtOAc (20 mL). The organic phase was separated, dried, and subjected to flash column chromatography (EtOAc–hexane, 1: 4) to afford the desired compounds as white solids.
  • 14 Selected Spectral Data for Compound 4,4′-(3,5-Di-p-tolylthiophene-2,4-diyl)dimorpholine (2b) Yield: 343 mg (79%); white crystals, mp 181–183 °C. 1H NMR (400 MHz, CDCl3): δ = 2.31 (s, 6 H), 2.65 (t, 3 J HH = 4.4 Hz, 4 H), 2.74 (t, 3 J HH = 4.4 Hz, 4 H), 3.35 (t, 3 J HH = 4.4 Hz, 4 H), 3.54 (t, 3 J HH = 4.4 Hz, 4 H), 7.09–7.13 (m, 4 H), 7.29 (d, 3 J HH = 8.0 Hz, 2 H), 7.39 (d, 3 J HH = 8.0 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 21.2, 21.3, 51.6, 52.6, 66.8, 67.3, 120.4, 126.5, 128.7, 128.8, 129.8, 130.1, 132.0, 132.8, 136.3, 137.1, 143.9, 151.4. Anal. Calcd for C26H30N2O2S: C, 71.86; H, 6.96; N, 6.45; S, 7.38. Found: C, 71.83; H, 6.93; N, 6.52; S, 7.34.