Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(14): 1991-1996
DOI: 10.1055/s-0034-1378726
DOI: 10.1055/s-0034-1378726
letter
Palladium-Catalyzed Annulation of 2,2′-Dibromobiphenyls with Alkynes: Synthesis of Functionalized Phenanthrenes and Dibenzochrysenes
Further Information
Publication History
Received: 20 March 2015
Accepted after revision: 10 May 2015
Publication Date:
15 July 2015 (online)
Abstract
A palladium-catalyzed annulation process of 2,2′-dibromobiphenyls with alkynes for the synthesis of functionalized phenanthrenes has been realized. The methodology provides an efficient approach to dibenzochrysene derivatives starting from simple reactants in two steps.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1378726.
- Supporting Information
-
References and Notes
- 1a Berresheim AJ, Müller M, Müllen K. Chem. Rev. 1999; 99: 1747
- 1b Watson MD, Fechtenkötter A, Müllen K. Chem. Rev. 2001; 101: 1267
- 1c Bendikov M, Wudl F, Perepichka DF. Chem. Rev. 2004; 104: 4891
- 1d Anthony JE. Chem. Rev. 2006; 106: 5028
- 1e Sergeyev S, Pisula W, Geerts YH. Chem. Soc. Rev. 2007; 36: 1902
- 1f Wu J, Pisula W, Müllen K. Chem. Rev. 2007; 107: 718
- 1g Murphy AR, Fréchet JM. J. Chem. Rev. 2007; 107: 1066
- 1h Watanabe M, Chen K.-Y, Chang YJ, Chow TJ. Acc. Chem. Res. 2013; 46: 1606
- 2 Hepworth JD, Waring DR, Waring MJ. Basic Concepts in Chemistry: Aromatic Chemistry . John-Wiley & Sons; New York: 2003
- 3 Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y. Nature (London) 2010; 464: 76
- 4 Matsuo Y, Sato Y, Hashiguchi M, Matsuo K, Nakamura E. Adv. Funct. Mater. 2009; 19: 2224
- 5a Lewis FD, Barancyk SV, Burch EL. J. Am. Chem. Soc. 1992; 114: 3866
- 5b Lewis FD, Burch EL. J. Phys. Chem. 1996; 100: 4055
- 6 Machado AM, Munaro M, Martins TD, Davila LY. A, Giro R, Caldas MJ, Atvars TD. Z, Akcelrud LC. Macromolecules 2006; 39: 3398
- 7a Honda K, Tada A, Hayashi N, Abe F, Yamauchi T. Experientia 1995; 51: 753
- 7b Rao KN, Bhattacharya RK, Venkatachalam SR. Cancer Lett. 1998; 128: 183
- 7c Ganguly T, Badheka LP, Sainis KB. Phytomedicine 2001; 8: 431
- 7d Ganguly T, Khar A. Phytomedicine 2002; 9: 288
- 7e Xi Z, Zhang R, Yu Z, Ouyang D, Huang R. Bioorg. Med. Chem. Lett. 2005; 15: 2673
- 7f Banwell MG, Bezos A, Burns C, Kruszelnicki I, Parish CR, Su S, Sydnes MO. Bioorg. Med. Chem. Lett. 2006; 16: 181
- 8 Tian H, Shi J, Dong S, Yan D, Wang L, Geng Y, Wang F. Chem. Commun. 2006; 3498
- 9 He B, Tian H, Geng Y, Wang F, Müllen K. Org. Lett. 2008; 10: 773
- 10a Peña D, Pérez D, Guitián E, Castedo L. J. Am. Chem. Soc. 1999; 121: 5827
- 10b Yoshikawa E, Yamamoto Y. Angew. Chem. Int. Ed. 2000; 39: 173
- 10c Liu Z, Larock RC. J. Org. Chem. 2007; 72: 223
- 11a Kanno K.-I, Liu Y, Iesato A, Nakajima K, Takahashi T. Org. Lett. 2005; 7: 5453
- 11b Thirunavukkarasu VS, Parthasarathy K, Cheng C.-H. Chem. Eur. J. 2010; 16: 1436
- 11c Neo AG, López C, Romero V, Antelo B, Delamano J, Pérez A, Fernández D, Almeida JF, Castedo L, Tojo G. J. Org. Chem. 2010; 75: 6764
- 11d Saifuddin M, Agarwal PK, Kundu B. J. Org. Chem. 2011; 76: 10122
- 11e Xiao T, Dong X, Tang Y, Zhou L. Adv. Synth. Catal. 2012; 354: 3195
- 11f Li H, He K.-H, Liu J, Wang B.-Q, Zhao K.-Q, Hu P, Shi Z.-J. Chem. Commun. 2012; 48: 7028
- 11g Korotvička A, Císařová I, Roithová J, Kotora M. Chem. Eur. J. 2012; 18: 4200
- 11h Kwon Y, Cho H, Kim S. Org. Lett. 2013; 15: 920
- 12a Cant AA, Roberts L, Greaney MF. Chem. Commun. 2010; 46: 8671
- 12b Jafarpour F, Hazrati H, Nouraldinmousa S. Org. Lett. 2013; 15: 3816
- 12c Periasamy M, Beesu M, Shanmugaraja M. Synthesis 2013; 45: 2913
- 13a Shimizu M, Nagao I, Tomioka Y, Hiyama T. Angew. Chem. Int. Ed. 2008; 47: 8096
- 13b Shimizu M, Nagao I, Tomioka Y, Kadowaki T, Hiyama T. Tetrahedron 2011; 67: 8014
- 14a Matsumoto A, Ilies L, Nakamura E. J. Am. Chem. Soc. 2011; 133: 6557
- 14b Wang C, Rakshit S, Glorius F. J. Am. Chem. Soc. 2010; 132: 14006
- 14c Ye F, Shi Y, Zhou L, Xiao Q, Zhang Y, Wang J. Org. Lett. 2011; 13: 5020
- 14d Xia Y, Liu Z, Xiao Q, Qu P, Ge R, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2012; 51: 5714
- 14e Hossain ML, Ye F, Liu Z, Xia Y, Shi Y, Zhou L, Zhang Y, Wang J. J. Org. Chem. 2014; 79: 8689
- 14f Nagata T, Hirano K, Satoh T, Miura M. J. Org. Chem. 2014; 79: 8960
- 14g Murai M, Hosokawa N, Roy D, Takai K. Org. Lett. 2014; 16: 4134
- 14h Kwon Y, Kim I, Kim S. Org. Lett. 2014; 16: 4936
- 15a Mandal AB, Lee G.-H, Liu Y.-H, Peng S.-M, Leung M.-K. J. Org. Chem. 2000; 65: 332
- 15b Lin Y.-D, Cho C.-L, Ko C.-W, Pulte A, Wu Y.-T. J. Org. Chem. 2012; 77: 9979
- 16 An W, Li G, Ma J, Tian Y, Xu F. Synlett 2014; 25: 1585
- 17a Yamaguchi S, Swager TM. J. Am. Chem. Soc. 2001; 123: 12087
- 17b Toal SJ, Trogler WC. J. Mater. Chem. 2006; 16: 2871
- 17c Li C.-W, Wang C.-I, Liao H.-Y, Chaudhuri R, Liu R.-S. J. Org. Chem. 2007; 72: 9203
- 17d Chaudhuri R, Hsu M.-Y, Li C.-W, Wang C.-I, Chen C.-J, Lai CK, Chen L.-Y, Liu S.-H, Wu C.-C, Liu R.-S. Org. Lett. 2008; 10: 3053
- 17e Mochida K, Kawasumi K, Segawa Y, Itami K. J. Am. Chem. Soc. 2011; 133: 10716
- 18a Scholl R, Mansfeld J. J. Ber. Dtsch. Chem. Ges. 1910; 43: 1734
- 18b Kovacic P, Jones MB. Chem. Rev. 1987; 87: 357
- 19 9,10-Disubustituted Phenanthrenes 3aa–3bd; General Procedure: A Schlenk flask was charged with 2,2′-dibromobiphenyls (0.3 mmol), alkyne (0.33 mmol), Pd(PPh3)2Cl2 (11 mg, 5 mol%), Xantphos (10 mg, 5.5 mol%) and K2CO3 (124 mg, 0.9 mmol) under N2. Mesitylene (5 mL) was added from a syringe, and the mixture was stirred at 150 °C until the reaction was complete (TLC). The mixture was cooled to r.t., and H2O (10 mL) was added. The resulting mixture was extracted with EtOAc (3 × 15 mL). The organic layers were combined, dried over anhyd Na2SO4, and concentrated to give a residue that was purified by column chromatography (silica gel, PE–EtOAc). 9-(3-Methoxyphenyl)-10-phenylphenanthrene (3ac): white solid; yield: 63 mg (58%); mp189.8–191.1 °C. 1H NMR (400 MHz, CDCl3): δ = 8.81 (d, J = 8.3 Hz, 2 H), 7.60–7.68 (m, 3 H), 7.54–7.57 (m, 1 H), 7.46–7.51 (m, 2 H), 7.26–7.29 (m, 1 H), 7.18–7.25 (m, 3 H), 7.13–7.16 (m, 2 H), 6.70–6.79 (m, 3 H), 3.68 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 158.9, 140.9, 139.5, 137.0, 137.0, 131.9, 131.7, 131.0, 131.0, 130.0, 130.0, 128.5, 127.9, 127.7, 127.6, 126.6, 126.6, 126.5, 126.4, 123.8, 122.5, 122.5, 116.6, 112.4, 55.2. HRMS (ESI): m/z calcd for [C27H20ONa]+: 383.1412; found: 383.1418. 9-(2-Methoxyphenyl)-10-phenylphenanthrene (3ad): faint yellow solid; yield: 23 mg (21%); mp 198.9–191.1 °C. 1H NMR (400 MHz, CDCl3): δ = 8.71 (dd, J = 8.3, 4.0 Hz, 2 H), 7.53–7.58 (m, 2 H), 7.47–7.50 (m, 1 H), 7.36–7.41 (m, 3 H), 7.07–7.16 (m, 6 H), 6.93 (dd, J = 7.4, 1.7 Hz, 1 H), 6.68–6.77 (m, 2 H), 3.49 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 156.2, 138.8, 136.5, 133.0, 131.3, 131.0, 130.7, 129.7, 129.1, 128.9, 127.5, 127.5, 126.7, 126.4, 126.2, 125.6, 125.5, 125.4, 125.2, 125.2, 121.5, 121.5, 119.0, 109.3, 54.1. HRMS (ESI): m/z calcd for [C27H20ONa]+: 383.1412; found: 383.1407. 9-(4-Fluorophenyl)-10-phenylphenanthrene (3ae): white solid; yield: 55 mg (53%); mp 256.8–257.9 °C. 1H NMR (400 MHz, CDCl3): δ = 8.80 (d, J = 8.4 Hz, 2 H), 7.64–7.68 (m, 2 H), 7.47–7.56 (m, 4 H), 7.20–7.26 (m, 3 H), 7.08–7.14 (m, 4 H), 6.90–6.95 (m, 2 H). 13C NMR (101 MHz, CDCl3): δ = 162.8, 160.3, 139.5, 137.7, 136.1, 135.5, 132.6, 132.5, 131.8, 131.0, 130.1, 127.9, 127.7, 127.6, 126.7, 126.6, 126.6, 126.5, 122.6, 122.5, 114.7, 114.5. HRMS (ESI): m/z calcd for [C26H17FNa]+: 371.1212; found: 371.1225. 9-(4-Ethylphenyl)-10-phenylphenanthrene (3af): white solid; yield: 77 mg (72%); mp 163.3–164.5 °C. 1H NMR (400 MHz, CDCl3): δ = 8.80 (d, J = 8.3 Hz, 2 H), 7.54–7.67 (m, 4 H), 7.45–7.50 (m, 2 H), 7.18–7.26 (m, 3 H), 7.14–7.16 (m, 2 H), 7.05 (s, 4 H), 2.61 (q, J = 7.6 Hz, 2 H), 1.21 (t, J = 7.6 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 142.2, 141.6, 139.7, 137.3, 137.2, 136.7, 132.1, 132.0, 131.1, 130.9, 130.0, 129.0, 128.0, 127.8, 127.6, 127.2, 127.0, 126.6, 126.3, 126.3, 122.5, 122.4, 28.5, 15.4. HRMS (ESI): m/z calcd for [C28H22Na]+: 381.1620; found: 381.1629. 9,10-Bis(4-tert-butylphenyl)phenanthrene (3aj): white solid; yield: 80 mg (60%); mp 279.9–281.0 °C. 1H NMR (400 MHz, CDCl3): δ = 8.80 (d, J = 8.2 Hz, 2 H), 7.71 (dd, J = 8.2, 0.9 Hz, 2 H), 7.63–7.67 (m, 2 H), 7.48–7.51 (m, 2 H), 7.17–7.20 (m, 4 H), 7.01–7.03 (m, 4 H), 1.27 (s, 18 H). 13C NMR (101 MHz, CDCl3): δ = 149.0, 137.6, 136.6, 132.0, 130.7, 129.9, 128.0, 126.5, 126.2, 124.1, 122.5, 34.4, 31.3. HRMS (ESI): m/z calcd for [C34H34Na]+: 465.2559; found: 465.2572. 9-Phenyl-10-(2-thienyl)phenanthrene (3am): yellow solid; yield: 64 mg (63%); mp 214.5–215.3 °C. 1H NMR (400 MHz, CDCl3): δ = 8.79 (d, J = 8.3 Hz, 2 H), 7.78–7.80 (m, 1 H), 7.65–7.70 (m, 2 H), 7.52–7.56 (m, 2 H), 7.46–7.50 (m, 1 H), 7.22–7.33 (m, 6 H), 6.92–6.95 (m, 1 H), 6.84–6.86 (m, 1 H). 13C NMR (101 MHz, CDCl3): δ = 140.1, 139.9, 139.5, 132.5, 131.7, 130.7, 130.4, 129.9, 129.6, 129.2, 128.2, 127.6, 127.6, 126.9, 126.9, 126.8, 126.7, 126.6, 126.3, 126.0, 122.5, 122.4. HRMS (ESI): m/z calcd for [C24H16SNa]+: 359.0871; found: 359.0872. 4-(10-Phenylphenanthren-9-yl)pyridine (3ao): faint yellow solid; yield: 57 mg (57%); mp 235.8–236.8 °C. 1H NMR (400 MHz, CDCl3): δ = 8.75 (dd, J = 8.3, 4.9 Hz, 2 H), 8.42 (dd, J = 4.5, 1.4 Hz, 2 H), 7.60–7.65 (m, 2 H), 7.37–7.50 (m, 4 H), 7.16–7.22 (m, 3 H), 7.01–7.08 (m, 4 H). 13C NMR (101 MHz, CDCl3): δ = 149.2, 148.2, 138.6, 137.3, 134.4, 131.5, 130.8, 130.5, 130.2, 128.1, 128.0, 127.9, 127.1, 127.1, 127.0, 127.0, 126.9, 126.8, 126.3, 122.8, 122.6. HRMS (ESI): m/z calcd for [C25H17NNa]+: 354.1259; found: 354.1265. 9-(p-Tolyl)-2,3,6,7-tetramethyl-10-phenylphenanthrene (3bb): faint yellow solid; yield: 60 mg (50%); mp 249.9–251.1 °C. 1H NMR (400 MHz, CDCl3): δ = 8.50 (s, 2 H), 7.11–7.24 (m, 7 H), 7.00 (s, 4 H), 2.52 (s, 6 H), 2.31 (s, 3 H), 2.30 (s, 6 H). 13C NMR (101 MHz, CDCl3): δ = 140.3, 136.9, 135.9, 135.9, 135.5, 135.3, 135.3, 135.2, 131.2, 131.0, 130.3, 130.2, 128.2, 128.1, 128.1, 127.8, 127.7, 127.4, 126.1, 122.7, 29.7, 21.3, 20.4, 20.2, 20.2. HRMS (ESI): m/z calcd for [C31H28Na]+: 423.2089; found: 423.2089. 9-(3-Methoxyphenyl)-2,3,6,7-tetramethyl-10-phenylphenanthrene (3bc): faint yellow solid; yield: 42 mg (34%); mp 149.1–150.3 °C. 1H NMR (400 MHz, CDCl3): δ = 8.56 (s, 2 H), 7.37 (s, 1 H), 7.23–7.31 (m, 7 H), 6.72–6.82 (m, 3 H), 3.72 (s, 3 H), 2.58 (s, 6 H), 2.36 (d, J = 6.0 Hz, 6 H). 13C NMR (101 MHz, CDCl3): δ = 158.8, 141.4, 140.1, 135.7, 135.7, 135.4, 135.4, 135.3, 131.1, 131.1, 130.1, 129.9, 128.4, 128.1, 128.1, 127.8, 127.8, 127.6, 127.4, 126.3, 123.9, 122.7, 116.6, 112.2, 55.2, 21.6, 20.5, 20.2, 15.4. HRMS (ESI): m/z calcd for [C31H28ONa]+: 439.2038; found: 439.2035. 9-(2-Methoxyphenyl)-2,3,6,7-tetramethyl-10-phenylphenanthrene (3bd): faint yellow solid; yield: 12 mg (10%); mp 203.5–204.8 °C. 1H NMR (400 MHz, CDCl3): δ = 8.50 (d, J = 5.4 Hz, 2 H), 7.12–7.21 (m, 8 H), 7.01 (dd, J = 7.4, 1.7 Hz, 1 H), 6.82–6.84 (m, 1 H), 6.75 (d, J = 8.2 Hz, 1 H), 3.56 (s, 3 H), 2.53 (s, 3 H), 2.52 (s, 3 H), 2.30 (s, 6 H). 13C NMR (101 MHz, CDCl3): δ = 157.4, 140.4, 136.2, 135.3, 135.2, 135.1, 135.0, 132.6, 132.5, 130.9, 130.2, 130.1, 129.1, 128.3, 128.2, 128.1, 127.6, 127.3, 127.2, 127.1, 126.2, 122.7, 119.9, 110.3, 55.2, 20.5, 20.4, 20.2, 20.1. HRMS (ESI): m/z calcd for [C31H28ONa]+: 439.2038; found: 439.2036.
- 20 Dibenzochryenes 4aa and 4ab; General Procedure: A dried flask was charged with 9,10-disubstituted phenanthrene (0.4 mmol), CuCl2 (270 mg, 2.0 mmol) and AlCl3 (267 mg, 2.0 mmol) under argon, and CS2 (5 mL) was added by a syringe. The mixture was stirred at r.t. until the reaction was complete. The mixture was diluted with CH2Cl2 and filtered through a plug of silica gel. The solvents were then removed under reduced pressure to provide a crude product, which was further purified by silica gel column chromatography (silica gel, PE–EtOAc). Palladium-Catalyzed Annulation of 2,2′-Dibromobiphenyls with Alkynes; Synthesis of Functionalized Phenanthrenes and Dibenzochrysenes: A palladium-catalyzed annulation process of 2,2′-dibromobiphenyls with alkynes for the synthesis of functionalized phenanthrenes was realized. The electron-deficient heteroaromatic-substituted acetylenes are capable of the annulation process. Thiophene-fused and pyridine-fused PAHs can also be synthesized easily. This methodology also provides a highly efficient and low-cost approach to dibenzochrysene derivatives starting from simple commercially available reactants in two steps.
For reviews of PAHs in organic electronics, see: