Subscribe to RSS
DOI: 10.1055/s-0034-1378736
Isocyanide-Based Multicomponent Reactions: Rapid Synthesis of a 5,5-Fused Bicyclic Skeleton from α,β-Unsaturated Ketones and Allenoates
Publication History
Received: 17 April 2015
Accepted after revision: 05 June 2015
Publication Date:
24 July 2015 (online)
Abstract
An efficient multicomponent reaction of isocyanides, allenoates, and α,β-unsaturated ketones is disclosed, thus providing rapid access for the synthesis of bicyclic skeletons. From a mechanistic standpoint, the present cycloaddition proceeds through cascade cycloaddition followed by hydration and intramolecular cyclization. Several controlled experiments are also conducted to gain further insight into the reaction mechanism; some valuable and interesting findings were observed during this process. To enrich the structural diversity, 3-(2-oxoethylene)indolinones (i.e. with an α,β-unsaturated ketone at position 3) were also found to be compatible in this reaction. In addition, this method is also characterized by its broad substrate scope, mild conditions, and high efficiency, which makes it valuable for further application.
Key words
isocyanide - multicomponent reaction - allenoate - bicyclic skeleton - α,β-unsaturated ketoneSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1378736.
- Supporting Information
-
References
- 1 S.X. and S.S. contributed equally to this work.
- 2a Buyck T, Wang Q, Zhu J. J. Am. Chem. Soc. 2014; 136: 11524
- 2b Mampuys P, Zhu Y, Vlaar T, Ruijter E, Orru RV. A, Maes BU. W. Angew. Chem. Int. Ed. 2014; 53: 12849
- 2c Kakuchi R. Angew. Chem. Int. Ed. 2014; 53: 46
- 2d Buyck T, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2013; 52: 12714
- 2e Lei C.-H, Wang D.-X, Zhao L, Zhu J, Wang M.-X. J. Am. Chem. Soc. 2013; 135: 4708
- 2f Zajdlik A, Wang Z, Hickey JL, Aman A, Schimmer AD, Yudin AK. Angew. Chem. Int. Ed. 2013; 52: 8411
- 2g Qiu G, Ding Q, Wu J. Chem. Soc. Rev. 2013; 42: 5257
- 2h Okitsu T, Nagase K, Nishio N, Wada A. Org. Lett. 2012; 14: 708
- 3a Liu J, Liu Z, Liao P, Bi X. Org. Lett. 2014; 16: 6204
- 3b Nanjo T, Tsukano C, Takemoto Y. Org. Lett. 2012; 14: 4270
- 3c Campo J, Garcia-Valverde M, Marcaccini S, Rojo M, Torroba JT. Org. Biomol. Chem. 2006; 4: 757
- 3d Janvier P, Bois-Choussy M, Bienaymé H, Zhu J. Angew. Chem. Int. Ed. 2003; 42: 811
- 3e Larionov OV, de Meijere A. Angew. Chem. Int. Ed. 2005; 44: 5664
- 3f Lygin AV, Larionov OV, Korotkov VS, de Meijere A. Chem. Eur. J. 2009; 15: 227
- 3g Helal CJ, Lucas JC. Org. Lett. 2002; 4: 4133
- 3h Kanazawa C, Kamijo S, Yamamoto Y. J. Am. Chem. Soc. 2006; 128: 10662
- 3i van Leusen AM, Wildeman J, Oldenyiel OH. J. Org. Chem. 1977; 42: 1153
- 3j Liu J, Fang Z, Zhang Q, Liu Q, Bi X. Angew. Chem. Int. Ed. 2013; 52: 6953
- 3k Vlaar T, Mampuys P, Helliwell M, Maes BU. W, Orru RV. A, Ruijter E. J. Org. Chem. 2013; 78: 6735
- 3l Qiu G, He Y, Wu J. Chem. Commun. 2012; 48: 3836
- 4a Vlaar T, Ruijter E, Maes BU. W, Orru RV. A. Angew. Chem. Int. Ed. 2013; 52: 7084
- 4b Baelen GV, Kuijer S, Rýcěk L, Sergeyev S, Janssen E, de Kanter FJ. J, Maes BU. W, Ruijter E, Orru RV. A. Chem. Eur. J. 2011; 17: 15039
- 4c Tobisu M, Imoto S, Ito S, Chatani N. J. Org. Chem. 2010; 75: 4835
- 4d Zhang M, Buchwald SL. J. Org. Chem. 1996; 61: 4498
- 4e Jones WD, Kosar WP. J. Am. Chem. Soc. 1986; 108: 5640
- 5a Jiang H, Cheng Y, Wang R, Zhang Y, Yu S. Chem. Commun. 2014; 50: 6164
- 5b Jiang H, Cheng Y, Wang R, Zheng M, Zhang Y, Yu S. Angew. Chem. Int. Ed. 2013; 52: 13289
- 5c Tobisu M, Koh K, Furukawa T, Chatani N. Angew. Chem. Int. Ed. 2012; 51: 11363
- 5d Mitamura T, Iwata K, Ogawa A. J. Org. Chem. 2011; 76: 3880
- 5e Sumi S, Matsumoto K, Tokuyama H, Fukuyama T. Org. Lett. 2003; 5: 1891
- 5f Curran DP, Liu H. J. Am. Chem. Soc. 1992; 114: 5863
- 5g Curran DP, Liu H. J. Am. Chem. Soc. 1991; 113: 2127
- 6 This unique property is also shared with carbon monoxide and formally divalent carbenes.
- 7a Multicomponent Reactions in Organic Synthesis . Zhu J, Wang Q, Wang M.-X. Wiley-VCH; Weinheim: 2014
- 7b Ruijter E, Scheffelaar R, Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
- 7c Toure BB, Hall DG. Chem. Rev. 2009; 109: 4439
- 7d Sunderhaus JD, Martin SF. Chem. Eur. J. 2009; 15: 1300
- 7e Isambert N, Lavilla R. Chem. Eur. J. 2008; 14: 8444
- 7f Dömling A. Chem. Rev. 2006; 106: 17
- 7g Ramón DJ, Yus M. Angew. Chem. Int. Ed. 2005; 44: 1602
- 8a Trost BM. Science (Washington, D.C.) 1991; 254: 1471
- 8b Wender PA, Verma VA, Paxton TJ, Pillow TH. Acc. Chem. Res. 2008; 41: 40
- 8c Richter JM, Ishihara Y, Masuda T, Whitefield BW, Llamas T, Pohjakallio A, Baran PS. J. Am. Chem. Soc. 2008; 130: 17938
- 9a Wang X, Wang S.-Y, Ji S.-J. Org. Lett. 2013; 15: 1954
- 9b Santra S, Andreana PR. Angew. Chem. Int. Ed. 2011; 50: 9418
- 9c Riva R, Banfi L, Basso A, Cerulli V, Guanti G, Pani M. J. Org. Chem. 2010; 75: 5134
- 9d Znabet A, Zonneveld J, Janssen E, De Kanter FJ. J, Helliwell M, Turner NJ, Ruijter E, Orru RV. A. Chem. Commun. 2010; 46: 7706
- 9e Janvier P, Bienaymé H, Zhu J. Angew. Chem. Int. Ed. 2002; 41: 4291
- 10a Solleder SC, Meier MA. R. Angew. Chem. Int. Ed. 2014; 53: 711
- 10b Lei C.-H, Zhao L, Wang D.-X, Zhu J, Wang M.-X. Org. Chem. Front. 2014; 1: 909
- 10c Basavanag UM. V, Santos AD, El Kaim L, Gámez-Montaño R, Grimaud L. Angew. Chem. Int. Ed. 2013; 52: 7194
- 10d Wang X, Xu X.-P, Wang S.-Y, Zhou W, Ji S.-J. Org. Lett. 2013; 15: 4246
- 10e Qiu G, Liu G, Pu SZ, Wu J. Chem. Commun. 2012; 48: 2903
- 11 Li J, Liu YJ, Li CJ, Jia XS. Chem. Eur. J. 2011; 17: 7409
- 12a Li J, Liu YJ, Li CJ, Jia XS. Adv. Synth. Catal. 2011; 353: 913
- 12b Li J, Wang N, Li CJ, Jia XS. Chem. Eur. J. 2012; 18: 9645
- 12c Su SK, Li CJ, Jia XS, Li J. Chem. Eur. J. 2014; 20: 5905
- 12d Jia SL, Su SK, Li CJ, Jia XS, Li J. Org. Lett. 2014; 16: 5604
- 13 CCDC 1041737 for compound 5d contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.
- 14 CCDC 1041829 for compound 6l contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.
- 15a Xing Y, Cheng B, Wang J, Lu P, Wang Y. Org. Lett. 2014; 16: 4814
- 15b Sun L, Zhu Y, Lu P, Wang Y. Org. Lett. 2013; 15: 5894
- 15c Li H, Hsung RP, DeKorver KA, Wei Y. Org. Lett. 2010; 12: 3780
- 16a Jiang HF, Liu BF, Li YB, Wang AZ, Huang HW. Org. Lett. 2011; 13: 1028
- 16b Shaabani A, Maleki A, Mofakham H, Moghimi-Rad J. J. Org. Chem. 2008; 73: 3925
- 17a Zhou F, Liu Y.-L, Zhou J. Adv. Synth. Catal. 2010; 352: 1381
- 17b Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
- 17c Trost BM, Jiang C. Synthesis 2006; 369
- 17d Williams RM, Cox RJ. Acc. Chem. Res. 2003; 36: 127
- 17e Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 2209
- 18a Kotha S, Deb AC, Lahiri K, Manivannan E. Synthesis 2009; 165
- 18b Greshock TJ, Grubbs AW, Jiao P, Wicklow DT, Gloer JB, Williams RM. Angew. Chem. Int. Ed. 2008; 47: 3573
- 18c Lo MM.-C, Neumann CS, Nagayama S, Perlstein EO, Schreiber SL. J. Am. Chem. Soc. 2004; 126: 16077
- 18d Venkatesan H, Davis MC, Altas Y, Snyder D, Liotta C. J. Org. Chem. 2001; 66: 3653
- 19 CCDC 1041914 for compound 8a contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.
- 20 Tan B, Candeias NR, Barbas CF. III. Nat. Chem. 2011; 3: 473
- 21 CCDC 1041830 for compound 9a contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.
- 22a Liang Y, Liu S, Xia Y, Li Y, Yu Z. Chem.–Eur. J. 2008; 14: 4361
- 22b Xia Y, Liang Y, Chen Y, Wang M, Jiao L, Huang F, Liu S, Li Y, Yu Z. J. Am. Chem. Soc. 2007; 129: 3470
- 22c Zhang C, Lu X. J. Org. Chem. 1995; 60: 2906
- 23 Substituted allenoate also serves as C4 component in phosphine-catalyzed [4+2] cycloaddition by using one carbon atom in alkyl substituent for the ring formation, which is different from the present multicomponent reaction.
- 24a Ugi I, Meyr R. Org. Synth. Coll. Vol. V . John Wiley & Sons; London: 1973
- 24b Obrecht R, Herrmann R, Ugi I. Synthesis 1985; 400
- 25a Creech GS, Kwon O. Org. Lett. 2008; 10: 429
- 25b Zhu X.-F, Lan J, Kwon O. J. Am. Chem. Soc. 2003; 125: 4716
- 26 Ding B.-Q, Zhang Z.-F, Liu Y.-G, Sugiya M, Imamoto T, Zhang W.-B. Org. Lett. 2013; 15: 3690
- 27a Trost BM, Zhang Y. J. Am. Chem. Soc. 2007; 129: 14548
- 27b Shintani R, Inoue M, Hayashi T. Angew. Chem. Int. Ed. 2006; 45: 3353
- 27c Lindwall HG, Maclennan JS. J. Am. Chem. Soc. 1932; 54: 4739
For recent examples, see:
For construction of heterocycles, see: Indole:
For a review on synthesis of indoles from isocyanides, see:
Oxazole:
Imidazole:
For the synthesis of other rings, see:
For palladium-catalyzed insertion of isocyanide, see:
For other metal-catalyzed insertion, see:
For radical based examples, see:
For atom economy:
For step economy:
For redox economy:
For reviews, see:
The first step is also a formal [3+2] cycloaddition, which is similar to phosphine-catalyzed [3+2] cycloaddition with allenoate. Please see: