Synthesis 2015; 47(22): 3473-3478
DOI: 10.1055/s-0034-1378787
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Imidazole Derivatives by Cascade Reaction: Base-Mediated Addition/Alkyne Hydroamination of Propargylamines and Carbodiimides

Jian-Hong Jia
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   eMail: jhwei828@zjut.edu.cn
,
Chao Yu
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   eMail: jhwei828@zjut.edu.cn
,
Meng Xu
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   eMail: jhwei828@zjut.edu.cn
,
Jia-Wei Ma
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   eMail: jhwei828@zjut.edu.cn
,
Hong-Wei Jin*
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   eMail: jhwei828@zjut.edu.cn
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 16. Februar 2015

Accepted after revision: 04. Juni 2015

Publikationsdatum:
12. August 2015 (online)


Abstract

A novel synthesis of 2-iminoimidazoles and 2-aminoimidazoles, via nucleophilic addition and a subsequent sodium hydroxide mediated intramolecular alkyne hydroamination from propargylamines and carbodiimides, is developed. This transition-metal-free cascade process represents an atom-economic and step-economic procedure for the construction of imidazole derivatives with high regioselectivity and moderate to good yields.

Supporting Information

 
  • References

    • 1a Trost BM. Science 1991; 254: 1471
    • 1b Wender PA, Miller BL. Nature 2009; 460: 197
  • 3 Lu L.-Q, Chen J.-R, Xiao W.-J. Acc. Chem. Res. 2012; 45: 1278
    • 4a Tamm M, Randoll S, Bannenberg T, Herdtweck E. Chem. Commun. 2004; 876
    • 4b Tamm M, Randoll S, Herdtweck E, Kleigrewe N, Kehr G, Erker G, Rieger B. Dalton Trans. 2006; 459
    • 4c Tskhovrebov AG, Solari E, Scopelliti R, Severin K. Inorg. Chem. 2013; 52: 11688
    • 5a Ahmad S, Ngu K, Combs DW, Wu SC, Weinstein DS, Liu W, Chen B.-C, Chandrasena G, Dorso CR, Kirby M, Atwal KS. Bioorg. Med. Chem. Lett. 2004; 14: 177
    • 5b Bickmeyer U, Grube A, Klings KW, Koeck M. Biochem. Biophys. Res. Commun. 2008; 373: 419
    • 5c Richards JJ, Ballard TE, Melander C. Org. Biomol. Chem. 2008; 6: 1356
    • 5d Sullivan JD, Giles RL, Looper RE. Curr. Bioact. Compd. 2009; 5: 39
    • 5e Inoue T, Morita M, Tojo T, Nagashima A, Moritomo A, Miyake H. Bioorg. Med. Chem. 2013; 21: 3873
    • 5f Hodnik Ž, Łos JM, Žula A, Zidar N, Jakopin Ž, Łos M, Dolenc MS, Ilaš J, Węgrzyn G, Mašič LP, Kikelj D. Bioorg. Med. Chem. Lett. 2014; 24: 2530
    • 6a Nishimura T, Kitajima K. J. Org. Chem. 1979; 44: 818
    • 6b Little TL, Webber SE. J. Org. Chem. 1994; 59: 7299
    • 6c Aberle NS, Lessene G, Watson KG. Org. Lett. 2006; 8: 419
    • 6d Ermolatév DS, Alifanov VL, Rybakov VB, Babaev EV, Van der Eycken E. Synthesis 2008; 2083
    • 6e Giles RL, Sullivan JD, Steiner AM, Looper RE. Angew. Chem. Int. Ed. 2009; 48: 3116
    • 6f Koswatta PB, Lovely CJ. Chem. Commun. 2010; 46: 2148
    • 7a Ermolat’ev DS, Bariwal JB, Steenackers HP. L, De Keersmaecker SC. J, Van der Eycken EV. Angew. Chem. Int. Ed. 2010; 49: 9465
    • 7b Wang Y, Shen H, Xie Z.-W. Synlett 2011; 969
  • 8 Liu S, Shao J.-A, Guo X, Luo J, Zhao M.-H, Zhang G.-L, Yu Y.-P. Tetrahedron 2014; 70: 1418
  • 9 Kunetskiy RA, Polyakova SM, Vavřík J, Císařová I, Saame J, Nerut ER, Koppel I, Koppel IA, Kütt A, Leito I, Lyapkalo IM. Chem. Eur. J. 2012; 18: 3621
    • 10a Tzalis D, Koradin C, Knochel P. Tetrahedron Lett. 1999; 40: 6193
    • 10b Rodriguez AL, Koradin C, Dohle W, Knochel P. Angew. Chem. Int. Ed. 2000; 39: 2488
    • 10c Joshi M, Patel M, Tiwari R, Verma AK. J. Org. Chem. 2012; 77: 5633
  • 11 Chen D.-S, Zhang M.-M, Li Y.-L, Liu Y, Wang X.-S. Tetrahedron 2014; 70: 2889
  • 12 Maffrand JP, Pereillo JM, Eloy F, Aubert D, Rolland F, Barthelemy G. Eur. J. Med. Chem. 1978; 13: 469