Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(14): 2037-2041
DOI: 10.1055/s-0034-1378846
DOI: 10.1055/s-0034-1378846
letter
Organoborane-Catalyzed Hydrogenation of Unactivated Aldehydes with a Hantzsch Ester as a Synthetic NAD(P)H Analogue
Further Information
Publication History
Received: 03 June 2015
Accepted after revision: 11 June 2015
Publication Date:
23 June 2015 (online)
Abstract
We have developed a method for the hydrogenation of unactivated aldehydes, using a Hantzsch ester as a NAD(P)H analogue in the presence of an electron-deficient triarylborane as a Lewis acid catalyst. Thus, tris[3,5-bis(trifluoromethyl)phenyl]borane efficiently catalyzes the hydrogenation of aliphatic aldehydes with a Hantzsch ester in 1,4-dioxane at 100 °C to give the corresponding aliphatic primary alcohols in up to 97% yield. Aromatic aldehydes also undergo the hydrogenation, even at 25 °C, to furnish the corresponding aromatic primary alcohols in up to 100% yield.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1378846.
- Supporting Information
-
References and Notes
- 1 Berg JM, Tymoczko JL, Stryer L. Biochemistry . W. H. Freeman and Company; New York: 2002
- 2a Kataoka M, Kita K, Wada M, Yasohara Y, Hasegawa J, Shimizu S. Appl. Microbiol. Biotechnol. 2003; 62: 437
- 2b Jarboe LR. Appl. Microbiol. Biotechnol. 2011; 89: 249
- 2c Rabinovitch-Deere CA, Oliver JW. K, Rodriguez GM, Atsumi S. Chem. Rev. 2013; 113: 4611
- 3a You S.-L. Chem. Asian J. 2007; 2: 820
- 3b Ouellet SG, Walji AM, Macmillan DW. C. Acc. Chem. Res. 2007; 40: 1327
- 3c Rueping M, Sugiono E, Schoepke FR. Synlett 2010; 852
- 3d Rueping M, Dufour J, Schoepke FR. Green Chem. 2011; 13: 1084
- 3e Zheng C, You S.-L. Chem. Soc. Rev. 2012; 41: 2498
- 4 McSkimming A, Colbran SB. Chem. Soc. Rev. 2013; 42: 5439
- 5a Yang JW, Hechavarria Fonseca MT, List B. Angew. Chem. Int. Ed. 2004; 43: 6660
- 5b Yang JW, Hechavarria Fonseca MT, Vignola N, List B. Angew. Chem. Int. Ed. 2005; 44: 108
- 6 Catalytic transfer hydrogenation of imines with a Hantzsch ester, see: Hoffmann S, Seayad AM, List B. Angew. Chem. Int. Ed. 2005; 44: 7424
- 7 Catalytic transfer hydrogenation of α-keto esters with a Hantzsch ester, see: Yang JW, List B. Org. Lett. 2006; 8: 5653
- 8a Zn: Creighton DJ, Sigman DS. J. Am. Chem. Soc. 1971; 93: 6314
- 8b Zn, Pb, Cb, Cu: Shirai M, Chishina T, Tanaka M. Bull. Chem. Soc. Jpn. 1975; 48: 1079
- 8c Zn: Creighton DJ, Hajdu J, Sigman DS. J. Am. Chem. Soc. 1976; 98: 4619
- 8d Mg: Ohnishi Y, Kitami M. Tetrahedron Lett. 1978; 19: 4033
- 8e Zn, Ni: Hughes M, Prince RH. J. Inorg. Nucl. Chem. 1978; 40: 703
- 8f Zn: Hood RA, Prince RH. J. Chem. Soc., Chem. Commun. 1979; 163
- 8g Mg: Mathis R, Dupas G, Decormeille A, Quéguiner G. Tetrahedron Lett. 1981; 22: 55
- 8h B, Ti, Al, Zr, Sb: Ohno A, Ishihara Y, Ushida S, Oka S. Tetrahedron Lett. 1982; 23: 3185
- 8i Mg: Dupas G, Bourguignon J, Ruffin C, Queguiner G. Tetrahedron Lett. 1982; 23: 5141
- 8j Zn: Awano H, Tagaki W. J. Chem. Soc., Chem. Commun. 1985; 994
- 8k Mg: Cazin J, Dupas G, Bourguignon J, Quéguiner G. Tetrahedron Lett. 1986; 27: 2375
- 8l Zn: Engbersen JF. J, Koudijs A, van der Plas HC. Bioorg. Chem. 1988; 16: 215
- 8m Mg, Zn, Nd, La, Eu, Al: Gelbard G, Lin J, Roques N. J. Org. Chem. 1992; 57: 1789
- 9a Shinkai S, Hamada H, Manabe O. Tetrahedron Lett. 1979; 20: 1397
- 9b Fukuzumi S, Ishikawa M, Tanaka T. J. Chem. Soc., Chem. Commun. 1985; 1069
- 9c Fukuzumi S, Ishikawa M, Tanaka T. Tetrahedron 1986; 42: 1021
- 9d Ishikawa M, Fukuzumi S. J. Chem. Soc., Chem. Commun. 1990; 1353
- 9e Kuroda K, Nagamatsu T, Yanada R, Yoneda F. J. Chem. Soc., Perkin Trans. 1 1993; 547
- 10a Deloux L, Srebnik M. Chem. Rev. 1993; 93: 763
- 10b Duggan PJ, Tyndall ED. J. Chem. Soc., Perkin Trans. 1 2002; 1325
- 10c Ishihara K In Boronic Acids . Hall DG. Wiley-VCH; Weinheim: 2005: 377-409
- 10d Dimitrijević E, Taylor MS. ACS Catal. 2013; 3: 945
- 11a Piers WE, Chivers T. Chem. Soc. Rev. 1997; 26: 345
- 11b Ishihara K, Yamamoto H. Eur. J. Org. Chem. 1999; 527
- 11c Erker G. Dalton Trans. 2005; 1883
- 11d Piers WE. Adv. Organomet. Chem. 2005; 52: 1
- 12a Mahdi T, Stephan DW. J. Am. Chem. Soc. 2014; 136: 15809
- 12b Scott DJ, Fuchter MJ, Ashley AE. J. Am. Chem. Soc. 2014; 136: 15813
- 13 A review on B(C6F5)3-catalyzed reduction of unsaturated compounds, see: Oestreich M, Hermeke J, Mohr J. Chem. Soc. Rev. 2015; 44: 2202
- 14 Very recently, Chatterijee and Oestreich reported the B(C6F5)3-catalyzed transfer hydrogenation of imines and related heterocycles with cyclohexa-1,4-dienes, see: Chatterjee I, Oestreich M. Angew. Chem. Int. Ed. 2015; 43: 1965
- 15 Webb JD, Laberge VS, Geier SJ, Stephan DW, Crudden CM. Chem. Eur. J. 2010; 16: 4895
- 16 Herrington TJ, Thom AJ. W, White AJ. P, Ashley AE. Dalton Trans. 2012; 41: 9019
- 17 We also tested the other hydrogen donors, see the Supporting Information. The reaction with Hantzsch ester 2 provided the best result.
- 18 Typical Procedure for the Hydrogenation Reaction (10p, Scheme 3) In a glovebox, piperanal (10p, 38 mg, 0.25 mmol) and Hantzsch ester 1 (95 mg, 0.38 mmol) were added to a solution of tris[3,5-bis(trifluoromethyl)phenyl]borane (9, 8.1 mg, 0.013 mmol) in dry 1,4-dioxane (1 mL). After the reaction mixture was stirred at 25 °C for 12 h, the solvent was removed by evaporation under reduced pressure. The obtained crude material was purified by silica gel column chromatography (eluent: hexane–EtOAc, 9:1) to give piperonyl alcohol (11p, 36 mg, 94%) as a colorless solid. 1H NMR (396 MHz, CDCl3): δ = 2.02 (br s, 1 H, OH), 4.55 (s, 2 H, CH 2OH), 5.94 (s, 2 H, OCH2O), 6.77 (d, J = 8.1 Hz, 2 H, ArH), 6.80 (d, J = 8.1 Hz, 2 H, ArH), 6.85 (s, 1 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 65.1, 101.0, 107.8, 108.1, 120.4, 134.8, 147.0, 147.7. MS (EI): m/z = 152 [M]+.
- 19 The reviewer pointed out the possible participation of borohydride species in the catalytic cycle (see ref. 15). However, the preliminary NMR experiment of borane 9 with Hantzsch ester 1 did not show the formation of borohydride species. Detailed mechanistic studies including DFT calculation are under investigation and will be reported in due course.
Selected recent reviews on enzymatic reduction of carbonyl compounds, see:
Selected recent reviews on transfer hydrogenation using synthetic NADH analogues as the hydrogen donors, see:
Catalytic transfer hydrogenation of α,β-unsaturated carbonyls with a Hantzsch ester, see:
Lewis acid mediated hydrogenation of unactivated aldehydes with synthetic NADH analogues, see:
Brønsted acid mediated transfer hydrogenation of unactivated aldehydes with synthetic NADH analogues, see:
Very recently, Stephan and Ashley groups reported that the combination of B(C6F5)3 and ethers (Et2O, i-Pr2O, and 1,4-dioxane) promoted the hydrogenation of ketones and limited aldehydes with H2 gas, see: