Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2015; 47(03): 330-342
DOI: 10.1055/s-0034-1378912
DOI: 10.1055/s-0034-1378912
paper
The First Total Synthesis of Pectinolides D and E and Total Synthesis of Pectinolides A and C
Further Information
Publication History
Received: 06 June 2014
Accepted after revision: 06 October 2014
Publication Date:
14 November 2014 (online)
Abstract
The first total synthesis of pectinolides D and E and total synthesis of pectinolides A and C was achieved from a hitherto unknown common key building block prepared from readily available d-mannitol. Key reactions involved in the synthesis are Red-Al reduction of an epoxy alcohol, enantioselective Noyori reduction of ynones, aldehyde–alkyne coupling, and Still–Genari cis-olefination.
Key words
pectinolides - first synthesis - aldehyde–alkyne coupling - Noyori reduction - Still–Genari cis-olefinationSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1378912.
- Supporting Information
-
References
- 1 Pereda-Miranda R, Hernández L, Villavicencio MJ, Novelo M, Ibarra M, Chai H, Pezzuto JM. J. Nat. Prod. 1993; 56: 583
- 2 Fragoso-Serrano M, Gibbons S, Pereda-Miranda R. Planta Med. 2005; 71: 278
- 3 Boalino DN, Conolly JD, McLean S, Reynolds WF, Tinto WF. Phytochemistry 2003; 64: 1303
- 4a Mendoza-Espinoza JS, Pez-Vallejo FL, Fragoso-Serrano M, Pereda-Miranda R, Cerda-García-Rojas CM. J. Nat. Prod. 2009; 72: 700
- 4b Romo De Vivar A, Vidales P, Perez A.-L. Phytochemistry 1991; 30: 2417
- 5 Martinez M. Las Plantas Medicinales de Mexico . Editorial Botas; Mexico: 1989: 508-517
- 6a Malan K, Pelissier Y, Marion C, Blaise A, Blessiere J. Planta Med. 1988; 54: 531
- 6b Pullaiah T. Encyclopaedia of World Medicinal Plants. Vol. 3. Regency Publications; New Delhi: 2006: 1134
- 6c Hjelmgaard T, Persson T, Rasmussen TB, Givskov M, Nielsen J. Bioorg. Med. Chem. 2003; 11: 3261
- 7 Yadav JS, Mandal SS. Tetrahedron Lett. 2011; 52: 5747
- 8a Sabitha G, Das SK, AnkiReddy P, Yadav JS. Tetrahedron Lett. 2013; 54: 1097
- 8b Kamal A, Reddy PV, Prabhakar S. Tetrahedron: Asymmetry 2009; 20: 1120
- 9 Ramesh D, Shekhar V, Chantibabu D, Rajaram S, Ramulu U, Venkateswarlu Y. Tetrahedron Lett. 2012; 53: 1258
- 10 Sabitha G, AnkiReddy P, Das SK, Yadav JS. Synthesis 2013; 45: 651
- 11 Sabitha G, Gurumurthy Ch, Yadav JS. Synthesis 2014; 46: 1757
- 12a Sabitha G, Rao AS, Sandeep A, Yadav JS. Eur. J. Org. Chem. 2014; 455
- 12b Sabitha G, Sandeep A, Rao AS, Yadav JS. Eur. J. Org. Chem. 2013; 6702
- 12c Sabitha G, Shankaraiah K, Yadav JS. Eur. J. Org. Chem. 2013; 4870
- 12d Sabitha G, Raju A, Reddy CN, Yadav JS. RSC Adv. 2014; 4: 1496
- 12e Sabitha G, Reddy DV, Reddy SS. S, Yadav JS, Kumar CG, Sujitha P. RSC Adv. 2012; 2: 7241
- 12f Sabitha G, Reddy SS. S, Yadav JS. Tetrahedron Lett. 2011; 52: 2407
- 12g Sabitha G, Reddy SS. S, Raju A, Yadav JS. Synthesis 2011; 1279
- 12h Sabitha G, Reddy CN, Raju A, Yadav JS. Tetrahedron: Asymmetry 2011; 22: 493
- 12i Sabitha G, Reddy CN, Gopal P, Yadav JS. Tetrahedron Lett. 2010; 51: 5736
- 12j Sabitha G, Bhikshapathi M, Ranjith N, Ashwini N, Yadav JS. Synthesis 2011; 821
- 13 Ghosh S, Pradhan TK. Synlett 2007; 2433
- 14a Trygstad TM, Pang Y, Forsyth CJ. J. Org. Chem. 2009; 74: 910
- 14b Yu P, Li C, Guozhu Z, Liming Z. J. Am. Chem. Soc. 2009; 131: 5062
- 15 The diastereomeric ratio of the product was determined by HPLC [Shimadzu HPLC system, chiral HPLC column (Chiralcel OD), UV detector, λ = 225 nm, Zorbax SBC 18 250 × 4.6 mm, 5μ (column), MeCN–H2O (7:3), flow rate: 1.0 mL/min]: t R = 6.1 and 6.3 min.
- 16 The diastereomeric excess of the product was determined by HPLC [Shimadzu HPLC system, chiral HPLC column (Chiralcel OD), UV detector, λ = 225 nm, Atlantis DC18 150 × 4.6 mm, 5μ (column), MeCN–H2O (3:1), flow rate: 1.0 mL/min]: t R = 21.17 and 24.34 min.
For our recent contributions to δ-lactone-containing natural products: