RSS-Feed abonnieren
DOI: 10.1055/s-0034-1378918
(3+2)-Cycloaddition Reactions of Oxyallyl Cations
Publikationsverlauf
Received: 30. Juli 2014
Accepted after revision: 09. Oktober 2014
Publikationsdatum:
10. November 2014 (online)
Abstract
The (3+2)-cycloaddition reaction involving oxyallyl cations has proven to be a versatile and efficient approach for the construction of five-membered carbo- and heterocycles, which are prevalent frameworks in natural products and pharmaceuticals. The following article will provide a brief summary of recent disclosures on this process featuring chemo-, regio- and diastereoselective oxyallyl cycloadditions with both electron-rich and electron-deficient 2π partners.
1 Introduction
2 Heteroatom-Substituted Oxyallyl Cations
3 Oxyallyl Cations Derived from Substituted Ketones
4 Oxyallyl Cations Intercepted from Nazarov Cyclization
5 1-Alkylidene-2-oxyallyl Cations
6 Summary and Outlook
-
References
- 1a Hoffmann HM. R. Angew. Chem., Int. Ed. Engl. 1984; 23: 1
- 1b Chiu P, Lautens M. Top. Curr. Chem. 1997; 190: 1
- 1c Davies HM. L In Advances in Cycloaddition . Harmata M. JAI Press; Stamford: 1999
-
1d Harmata M. Acc. Chem. Res. 2001; 34: 595
-
1e Harmata M, Rashatasakhon P. Tetrahedron 2003; 59: 2371
- 1f Rigby JH, Pigge FC. Org. React. 1997; 51: 351
- 1g Niess B, Hoffmann HM. R. Angew. Chem. Int. Ed. 2005; 44: 26
- 1h Harmata M. Adv. Synth. Catal. 2006; 348: 2297
-
1i Harmata M. Chem. Commun. 2010; 46: 8886
-
1j Harmata M. Chem. Commun. 2010; 46: 8904
- 1k Lohse AG, Hsung RP. Chem. Eur. J. 2011; 17: 3812
- 2a For cycloadditions using photochemically derived oxyallyl cations, see review: West FG. CRC Handbook of Organic Photochemistry and Photobiology . 2nd ed.; Horspool W, Lenci F. CRC Press; Boca Raton: 2004. Chap. 83
- 2b The designation (m+n) herein describes the number of atoms participating in the cycloadditions, while [m+n] indicates the number of electrons.
- 3a Hartung IV, Hoffmann HM. R. Angew. Chem. Int. Ed. 2004; 43: 1934
- 3b Battiste MA, Pelphrey PM, Wright DL. Chem. Eur. J. 2006; 12: 3438
- 3c Jones DE, Harmata M. Methods and Applications of Cycloaddition Reactions in Organic Syntheses. Nishiwaki N. Wiley; Hoboken: 2014: 599-630
- 4a Noyori R, Hayakawa Y. Org. React. 1983; 29: 163
- 4b Noyori R. Acc. Chem. Res. 1979; 12: 61
-
4c Frühauf H-W. Chem. Rev. 1997; 97: 523
- 4d Gibson SE, Lewis SE, Mainolfi N. J. Organomet. Chem. 2004; 689: 3873
- 4e Ramaiah M. Synthesis 1984; 529
- 4f Martin SF. Tetrahedron 1980; 36: 419
-
4g Mann J. Tetrahedron 1986; 42: 4611
- 5a Noyori R, Yokoyama K, Makino S, Hayakawa Y. J. Am. Chem. Soc. 1972; 94: 1772
- 5b Hayakawa Y, Yokoyama K, Noyori R. Tetrahedron Lett. 1976; 48: 4347
- 5c Hayakawa Y, Yokoyama K, Noyori R. J. Am. Chem. Soc. 1978; 100: 1799
- 5d Noyori R, Hayakawa Y, Takaya H, Murai S, Kobayashi R, Sonoda N. J. Am. Chem. Soc. 1978; 100: 1959
- 5e Jacobson RM, Abbaspour A, Lahm GP. J. Org. Chem. 1978; 43: 4650
- 5f Hegedus LS, Holden MS. J. Org. Chem. 1985; 50: 3920
- 5g Fukuzawa S, Fukushima M, Fujinami T, Sakai S. Bull. Chem. Soc. Jpn. 1989; 62: 2348
- 5h Corriu RJ. P, Moreau JJ. E, Pataud-Sat M. J. Org. Chem. 1990; 55: 2878
- 6a Hayakawa Y, Takaya H, Makino S, Hayakawa N, Noyori R. Bull. Chem. Soc. Jpn. 1977; 50: 1990
- 6b Noyori R, Hayakawa Y, Makino S, Hayakawa N, Takaya H. J. Am. Chem. Soc. 1973; 95: 4103
- 7 Barrow M.-A, Richards AC, Smithers RH, Hoffmann HM. R. Tetrahedron Lett. 1972; 13: 3101
- 8 Fry AJ, Ginsburg GS, Parente RA. J. Chem. Soc., Chem. Commun. 1978; 1040
- 10a References 1i, 1j.
- 10b Lu T, Lu Z, Ma Z, Zhang Y, Hsung RP. Chem. Rev. 2013; 113: 4862
- 10c Lo B, Lam S, Wong W.-T, Chiu P. Angew. Chem. Int. Ed. 2012; 51: 12120
-
10d Han X, Li H, Hughes RP, Wu J. Angew. Chem. Int. Ed. 2012; 51: 10390
-
10e Du Y, Krenske EH, Antoline JE, Lohse AG, Houk KN, Hsung RP. J. Org. Chem. 2013; 78: 1753
- 10f He S, Hsung RP, Presser WR, Ma Z, Haugen BJ. Org. Lett. 2014; 16: 2180
- 11 Masuya K, Domon K, Tanino K, Kuwajima I. Synlett 1996; 157
- 12 Masuya K, Domon K, Tanino K, Kuwajima I. J. Am. Chem. Soc. 1998; 120: 1724
- 13 Mizuno H, Domon K, Masuya K, Tanino K, Kuwajima I. J. Org. Chem. 1999; 64: 2648
- 14 For a formal synthesis of racemic coriolin, see: Masuya K, Domon K, Tanino K, Kuwajima I. Tetrahedron Lett. 1997; 38: 465
- 15a Katritzky AR. Chem. Rev. 1989; 89: 827
- 15b Wender PA, Jesudason CD, Nakahira H, Tamura N, Tebbe AL, Ueno Y. J. Am. Chem. Soc. 1997; 119: 12976
- 15c Wender PA, Bi FC, Buschmann N, Gosselin F, Kan C, Kee J, Ohmura H. Org. Lett. 2006; 8: 5373
- 15d Burns NZ, Witten MR, Jacobsen EN. J. Am. Chem. Soc. 2011; 133: 14578
- 16 Gerard B, Jones G, Porco JA. Jr. J. Am. Chem. Soc. 2004; 126: 13620
- 17 Gerard B, Sangji S, O’Leary DJ, Porco JA. Jr. J. Am. Chem. Soc. 2006; 128: 7754
- 18a Gerard B, Cencic R, Pelletier J, Porco JA. Jr. Angew. Chem. Int. Ed. 2007; 46: 7831
- 18b Roche SP, Cencic R, Pelletier J, Porco JA. Jr. Angew. Chem. Int. Ed. 2010; 49: 6533
- 18c Adams TE, Sous ME, Hawkins BC, Hirner S, Holloway G, Khoo ML, Owen DJ, Sawage GP, Scammells PJ, Rizzacasa MA. J. Am. Chem. Soc. 2009; 131: 1607
- 19 Xia B, Gerard B, Solano DM, Wan J, Jones G, Porco JA. Jr. Org. Lett. 2011; 13: 1346
- 20 Krenske EH, He S, Huang J, Du Y, Houk KN, Hsung RP. J. Am. Chem. Soc. 2013; 135: 5242
- 21 Rameshkumar C, Hsung RP. Angew. Chem. Int. Ed. 2004; 43: 615
- 22a For leading reviews on using α,α-dibromo ketones as an oxyallyl source, see references 1a and 1b.
-
22b Montaña AM, Grima PM. Tetrahedron Lett. 2001; 42: 7809
-
22c Montaña AM, Grima PM. Synth. Commun. 2003; 33: 265
- 23 Hardinger SA, Bayne C, Kantorowski E, McClellan R, Larres L, Nuesse M. J. Org. Chem. 1995; 60: 1104
- 24 Li H, Hughes RP, Wu J. J. Am. Chem. Soc. 2014; 136: 6288
- 25 See references 1g, 1h, 1i, 1j.
- 26 Harmata M, Huang C, Rooshenas P, Schreiner PR. Angew. Chem. Int. Ed. 2008; 47: 8696
- 27 For an overview of the conventional Nazarov reaction, see: Kürti L, Czakó B. Strategic Applications of Named Reactions in Organic Synthesis . Elsevier Academic Press; London: 2005: 304
- 28 For a review on the interrupted Nazarov reaction, see: Grant TG, Rieder CJ, West FG. Chem. Commun. 2009; 5676
- 29 Bender JA, Blize AE, Browder CC, Giese S, West FG. J. Org. Chem. 1998; 63: 2430
- 30 Giese S, Kastrup L, Stiens D, West FG. Angew. Chem. Int. Ed. 2000; 39: 1970
- 31 Mahmound B, West FG. Tetrahedron Lett. 2007; 48: 5091
- 32 Bos PH, Antelek MT, Porco JA. Jr, Stephenson CR. J. J. Am. Chem. Soc. 2013; 135: 17978
- 33 Schultz AG, Puig S, Wang Y. J. Chem. Soc., Chem. Commun. 1985; 785
- 34 Marx VM, Burnell DJ. J. Am. Chem. Soc. 2010; 132: 1685
- 35 Yadav VK, Naganaboina VK, Hulikal V. Tetrahedron Lett. 2014; 55: 2015
- 36 Fujita M, Oshima M, Okuno S, Sugimura T, Okuyama T. Org. Lett. 2006; 8: 4113
For reviews on cycloaddition involving oxyallyl cations, see:
For reviews on reactivity of oxyallyl cations containing (3+2) mode, see:
For precedents of oxyallyl (3+2) cycloaddition to access cyclopentanones before 1995, see:
For representative reviews, see:
For recent examples, see:
For a review containing (5+2) cycloaddition of oxidopyrylium ions, see:
For recent examples, see:
For a more recent use of diiodo ketones as oxallyl sources, see: