Synthesis 2015; 47(01): 22-33
DOI: 10.1055/s-0034-1378918
short review
© Georg Thieme Verlag Stuttgart · New York

(3+2)-Cycloaddition Reactions of Oxyallyl Cations

Hui Li
Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA   Fax: +1(603)6463946   eMail: jimmy.wu@dartmouth.edu
,
Jimmy Wu*
Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA   Fax: +1(603)6463946   eMail: jimmy.wu@dartmouth.edu
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 30. Juli 2014

Accepted after revision: 09. Oktober 2014

Publikationsdatum:
10. November 2014 (online)


Abstract

The (3+2)-cycloaddition reaction involving oxyallyl cations has proven to be a versatile and efficient approach for the construction of five-membered carbo- and heterocycles, which are prevalent frameworks in natural products and pharmaceuticals. The following article will provide a brief summary of recent disclosures on this process featuring chemo-, regio- and diastereoselective oxyallyl cycloadditions with both electron-rich and electron-deficient 2π partners.

1 Introduction

2 Heteroatom-Substituted Oxyallyl Cations

3 Oxyallyl Cations Derived from Substituted Ketones

4 Oxyallyl Cations Intercepted from Nazarov Cyclization

5 1-Alkylidene-2-oxyallyl Cations

6 Summary and Outlook

 
  • References


    • For reviews on cycloaddition involving oxyallyl cations, see:
    • 1a Hoffmann HM. R. Angew. Chem., Int. Ed. Engl. 1984; 23: 1
    • 1b Chiu P, Lautens M. Top. Curr. Chem. 1997; 190: 1
    • 1c Davies HM. L In Advances in Cycloaddition . Harmata M. JAI Press; Stamford: 1999
    • 1d Harmata M. Acc. Chem. Res. 2001; 34: 595
    • 1e Harmata M, Rashatasakhon P. Tetrahedron 2003; 59: 2371
    • 1f Rigby JH, Pigge FC. Org. React. 1997; 51: 351
    • 1g Niess B, Hoffmann HM. R. Angew. Chem. Int. Ed. 2005; 44: 26
    • 1h Harmata M. Adv. Synth. Catal. 2006; 348: 2297
    • 1i Harmata M. Chem. Commun. 2010; 46: 8886
    • 1j Harmata M. Chem. Commun. 2010; 46: 8904
    • 1k Lohse AG, Hsung RP. Chem. Eur. J. 2011; 17: 3812
    • 2a For cycloadditions using photochemically derived oxyallyl cations, see review: West FG. CRC Handbook of Organic Photochemistry and Photobiology . 2nd ed.; Horspool W, Lenci F. CRC Press; Boca Raton: 2004. Chap. 83
    • 2b The designation (m+n) herein describes the number of atoms participating in the cycloadditions, while [m+n] indicates the number of electrons.
    • 3a Hartung IV, Hoffmann HM. R. Angew. Chem. Int. Ed. 2004; 43: 1934
    • 3b Battiste MA, Pelphrey PM, Wright DL. Chem. Eur. J. 2006; 12: 3438
    • 3c Jones DE, Harmata M. Methods and Applications of Cycloaddition Reactions in Organic Syntheses. Nishiwaki N. Wiley; Hoboken: 2014: 599-630

      For reviews on reactivity of oxyallyl cations containing (3+2) mode, see:
    • 4a Noyori R, Hayakawa Y. Org. React. 1983; 29: 163
    • 4b Noyori R. Acc. Chem. Res. 1979; 12: 61
    • 4c Frühauf H-W. Chem. Rev. 1997; 97: 523
    • 4d Gibson SE, Lewis SE, Mainolfi N. J. Organomet. Chem. 2004; 689: 3873
    • 4e Ramaiah M. Synthesis 1984; 529
    • 4f Martin SF. Tetrahedron 1980; 36: 419
    • 4g Mann J. Tetrahedron 1986; 42: 4611

      For precedents of oxyallyl (3+2) cycloaddition to access cyclopentanones before 1995, see:
    • 5a Noyori R, Yokoyama K, Makino S, Hayakawa Y. J. Am. Chem. Soc. 1972; 94: 1772
    • 5b Hayakawa Y, Yokoyama K, Noyori R. Tetrahedron Lett. 1976; 48: 4347
    • 5c Hayakawa Y, Yokoyama K, Noyori R. J. Am. Chem. Soc. 1978; 100: 1799
    • 5d Noyori R, Hayakawa Y, Takaya H, Murai S, Kobayashi R, Sonoda N. J. Am. Chem. Soc. 1978; 100: 1959
    • 5e Jacobson RM, Abbaspour A, Lahm GP. J. Org. Chem. 1978; 43: 4650
    • 5f Hegedus LS, Holden MS. J. Org. Chem. 1985; 50: 3920
    • 5g Fukuzawa S, Fukushima M, Fujinami T, Sakai S. Bull. Chem. Soc. Jpn. 1989; 62: 2348
    • 5h Corriu RJ. P, Moreau JJ. E, Pataud-Sat M. J. Org. Chem. 1990; 55: 2878
    • 6a Hayakawa Y, Takaya H, Makino S, Hayakawa N, Noyori R. Bull. Chem. Soc. Jpn. 1977; 50: 1990
    • 6b Noyori R, Hayakawa Y, Makino S, Hayakawa N, Takaya H. J. Am. Chem. Soc. 1973; 95: 4103
  • 7 Barrow M.-A, Richards AC, Smithers RH, Hoffmann HM. R. Tetrahedron Lett. 1972; 13: 3101
  • 8 Fry AJ, Ginsburg GS, Parente RA. J. Chem. Soc., Chem. Commun. 1978; 1040
    • 9a Cookson RC, Nye MJ. Proc. Chem. Soc. 1963; 129
    • 9b Cookson RC, Nye MJ. J. Chem. Soc. 1965; 2009

      For representative reviews, see:
    • 10a References 1i, 1j.
    • 10b Lu T, Lu Z, Ma Z, Zhang Y, Hsung RP. Chem. Rev. 2013; 113: 4862

    • For recent examples, see:
    • 10c Lo B, Lam S, Wong W.-T, Chiu P. Angew. Chem. Int. Ed. 2012; 51: 12120
    • 10d Han X, Li H, Hughes RP, Wu J. Angew. Chem. Int. Ed. 2012; 51: 10390
    • 10e Du Y, Krenske EH, Antoline JE, Lohse AG, Houk KN, Hsung RP. J. Org. Chem. 2013; 78: 1753
    • 10f He S, Hsung RP, Presser WR, Ma Z, Haugen BJ. Org. Lett. 2014; 16: 2180
  • 11 Masuya K, Domon K, Tanino K, Kuwajima I. Synlett 1996; 157
  • 12 Masuya K, Domon K, Tanino K, Kuwajima I. J. Am. Chem. Soc. 1998; 120: 1724
  • 13 Mizuno H, Domon K, Masuya K, Tanino K, Kuwajima I. J. Org. Chem. 1999; 64: 2648
  • 14 For a formal synthesis of racemic coriolin, see: Masuya K, Domon K, Tanino K, Kuwajima I. Tetrahedron Lett. 1997; 38: 465

    • For a review containing (5+2) cycloaddition of oxidopyrylium ions, see:
    • 15a Katritzky AR. Chem. Rev. 1989; 89: 827

    • For recent examples, see:
    • 15b Wender PA, Jesudason CD, Nakahira H, Tamura N, Tebbe AL, Ueno Y. J. Am. Chem. Soc. 1997; 119: 12976
    • 15c Wender PA, Bi FC, Buschmann N, Gosselin F, Kan C, Kee J, Ohmura H. Org. Lett. 2006; 8: 5373
    • 15d Burns NZ, Witten MR, Jacobsen EN. J. Am. Chem. Soc. 2011; 133: 14578
  • 16 Gerard B, Jones G, Porco JA. Jr. J. Am. Chem. Soc. 2004; 126: 13620
  • 17 Gerard B, Sangji S, O’Leary DJ, Porco JA. Jr. J. Am. Chem. Soc. 2006; 128: 7754
    • 18a Gerard B, Cencic R, Pelletier J, Porco JA. Jr. Angew. Chem. Int. Ed. 2007; 46: 7831
    • 18b Roche SP, Cencic R, Pelletier J, Porco JA. Jr. Angew. Chem. Int. Ed. 2010; 49: 6533
    • 18c Adams TE, Sous ME, Hawkins BC, Hirner S, Holloway G, Khoo ML, Owen DJ, Sawage GP, Scammells PJ, Rizzacasa MA. J. Am. Chem. Soc. 2009; 131: 1607
  • 19 Xia B, Gerard B, Solano DM, Wan J, Jones G, Porco JA. Jr. Org. Lett. 2011; 13: 1346
  • 20 Krenske EH, He S, Huang J, Du Y, Houk KN, Hsung RP. J. Am. Chem. Soc. 2013; 135: 5242
  • 21 Rameshkumar C, Hsung RP. Angew. Chem. Int. Ed. 2004; 43: 615
    • 22a For leading reviews on using α,α-dibromo ketones as an oxyallyl source, see references 1a and 1b.

    • For a more recent use of diiodo ketones as oxallyl sources, see:
    • 22b Montaña AM, Grima PM. Tetrahedron Lett. 2001; 42: 7809
    • 22c Montaña AM, Grima PM. Synth. Commun. 2003; 33: 265
  • 23 Hardinger SA, Bayne C, Kantorowski E, McClellan R, Larres L, Nuesse M. J. Org. Chem. 1995; 60: 1104
  • 24 Li H, Hughes RP, Wu J. J. Am. Chem. Soc. 2014; 136: 6288
  • 25 See references 1g, 1h, 1i, 1j.
  • 26 Harmata M, Huang C, Rooshenas P, Schreiner PR. Angew. Chem. Int. Ed. 2008; 47: 8696
  • 27 For an overview of the conventional Nazarov reaction, see: Kürti L, Czakó B. Strategic Applications of Named Reactions in Organic Synthesis . Elsevier Academic Press; London: 2005: 304
  • 28 For a review on the interrupted Nazarov reaction, see: Grant TG, Rieder CJ, West FG. Chem. Commun. 2009; 5676
  • 29 Bender JA, Blize AE, Browder CC, Giese S, West FG. J. Org. Chem. 1998; 63: 2430
  • 30 Giese S, Kastrup L, Stiens D, West FG. Angew. Chem. Int. Ed. 2000; 39: 1970
  • 31 Mahmound B, West FG. Tetrahedron Lett. 2007; 48: 5091
  • 32 Bos PH, Antelek MT, Porco JA. Jr, Stephenson CR. J. J. Am. Chem. Soc. 2013; 135: 17978
  • 33 Schultz AG, Puig S, Wang Y. J. Chem. Soc., Chem. Commun. 1985; 785
  • 34 Marx VM, Burnell DJ. J. Am. Chem. Soc. 2010; 132: 1685
  • 35 Yadav VK, Naganaboina VK, Hulikal V. Tetrahedron Lett. 2014; 55: 2015
  • 36 Fujita M, Oshima M, Okuno S, Sugimura T, Okuyama T. Org. Lett. 2006; 8: 4113