Synlett 2015; 26(05): 635-638
DOI: 10.1055/s-0034-1378947
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Nitromethyl-Substituted Oxindole Derivatives via a Desulfonylation Cascade

Ben Niu
a   Pharmacy School, Jiangsu University, Xuefu Road 301, Zhenjiang, Jiangsu 212013, P. R. of China   Email: ahz@ujs.edn.cn
,
Ping Xie
b   Scientific Information Research Institute, Jiangsu University (Library), Xuefu Road 301, Zhenjiang, Jiangsu, 212013, P. R. of China
,
Zhaogang Bian
a   Pharmacy School, Jiangsu University, Xuefu Road 301, Zhenjiang, Jiangsu 212013, P. R. of China   Email: ahz@ujs.edn.cn
,
Wannian Zhao
a   Pharmacy School, Jiangsu University, Xuefu Road 301, Zhenjiang, Jiangsu 212013, P. R. of China   Email: ahz@ujs.edn.cn
,
Min Zhang
a   Pharmacy School, Jiangsu University, Xuefu Road 301, Zhenjiang, Jiangsu 212013, P. R. of China   Email: ahz@ujs.edn.cn
,
Yang Zhou
a   Pharmacy School, Jiangsu University, Xuefu Road 301, Zhenjiang, Jiangsu 212013, P. R. of China   Email: ahz@ujs.edn.cn
,
Lei Feng
a   Pharmacy School, Jiangsu University, Xuefu Road 301, Zhenjiang, Jiangsu 212013, P. R. of China   Email: ahz@ujs.edn.cn
,
Charles U. Pittman Jr
c   Mississippi State University, Mississippi State, MS 39762, USA
,
Aihua Zhou*
a   Pharmacy School, Jiangsu University, Xuefu Road 301, Zhenjiang, Jiangsu 212013, P. R. of China   Email: ahz@ujs.edn.cn
› Author Affiliations
Further Information

Publication History

Received: 29 July 2014

Accepted after revision: 24 November 2014

Publication Date:
09 January 2015 (online)


Abstract

A cascade reaction giving nitromethyl-substituted oxindole derivatives was developed. The reaction used NaNO2 as the nitro source and potassium peroxydisulfate as an oxidant. This reaction proceeded via a radical mechanism involving substitution–desulfonlylation–cyclization steps in one pot and afforded good yields under mild conditions without using toxic metal catalysts. The resultant nitromethyl-substituted oxindole derivatives are convenient and valuable structures for different derivative syntheses.

Supporting Information

 
  • Reference and Notes

    • 1a Li B.-J, Shi Z.-J. Chem. Soc. Rev. 2012; 41: 5588
    • 1b Singh GS, Desta ZY. Chem. Rev. 2012; 112: 6104
    • 1c Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 1d Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 1e Wencel-Delord J, Dröge T, Liuand F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 1f Ashenhurst JA. Chem. Soc. Rev. 2010; 39: 540
    • 1g Petrov KG, Stewart M, Melrose H, Hopkins B, McHarg A, Wallis R. Eur. J. Pharmacol. 1999; 375: 61
    • 1h Petrov KG, Zhang Y, Carter M, Cockerill GS, Dickerson S, Gauthier CA, Guo Y, Mook RA, Rusnak DW, Walker AL, Wood ER, Lackey KE. Bioorg. Med. Chem. Lett. 2006; 16: 4686
    • 1i Wu T, Zhang H, Liu G.-S. Tetrahedron 2012; 68: 5229
    • 1j Jensen BS. CNS Drug Rev. 2002; 8: 353
    • 1k Hong L, Wang R. Adv. Synth. Catal. 2013; 355: 1023
    • 2a Beyer A, Buendia J, Bolm C. Org. Lett. 2012; 14: 3948
    • 2b Ueda S, Okada T, Nagasawa H. Chem. Commun. 2010; 46: 2462
    • 2c MacDonald JP, Badillo JJ, Arevalo GE, Silva-García A, Franz KA. ACS Comb. Sci. 2012; 14: 285
    • 2d LaPorte MG, Tsegay S, Hong K, Lu C, Fang C, Wang L, Xie X, Floreancig PE. ACS Comb. Sci. 2013; 15: 344
    • 2e Ball-Jons NR, Badillo JJ, Franz AK. Org. Biomol. Chem. 2012; 10: 5165
    • 2f Wu T, Mu X, Liu G.-S. Angew. Chem. Int. Ed. 2011; 50: 12578
    • 2g Meng Y, Guo L.-N, Wang H, Duan X.-H. Chem. Commun. 2013; 49: 7540
    • 3a Pinto A, Neuville L, Retailleau P, Zhu JP. Org. Lett. 2006; 8: 4927
    • 3b Miura T, Toyoshima T, Takahashi Y, Murakmi M. Org. Lett. 2009; 11: 2141
    • 3c Zou LW, Bao XZ, Ma YY, Song YM, Qu JP, Wang BM. Chem. Commun. 2014; 50: 5760
    • 3d Lv JL, Negrerie DZ, Deng J, Du YF, Zhao K. J. Org. Chem. 2014; 79: 1111
    • 3e Zhou S, Guo L, Wang H, Duan X.-H. Chem. Eur. J. 2013; 19: 12970
    • 3f Yin F, Wang X. Org. Lett. 2014; 16: 1128
    • 3g Boominathan M, Nagataj M, Muthusubramahian S, Bhuvanesh N. RSC Adv. 2014; 4: 18549
    • 3h Li ZJ, Zhang Y, Zhang LZ, Liu ZQ. Org. Lett. 2014; 16: 382
    • 3i Shi LL, Wang YY, Yang HJ, Fu H. Org. Biomol. Chem. 2014; 12: 4372
    • 3j Wang JY, Zhang X, Bao Y, Xu YM, Cheng XF, Wang XS. Org. Biomol. Chem. 2014; 12: 5582
    • 4a O’Hagan D, Rzepa HS. Chem. Commun. 1997; 645
    • 4b Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 4c Li X, Xu X, Hu P, Xiao X, Zhou C. J. Org. Chem. 2013; 78: 7343
    • 4d Deak G, Doda M, Gyorgy L, Hazai L, Sterk L. J. Med. Chem. 1977; 20: 1384
    • 4e Hibino S, Choshi T. Nat. Prod. Rep. 2001; 18: 66
    • 4f Trost BM, Xie J, Sieber JD. J. Am. Chem. Soc. 2011; 133: 20611
    • 5a Kamano Y, Zhang HP, Ichihara Y, Kizu H, Komiyama K, Pettit GR. Tetrahedron Lett. 1995; 36: 2783
    • 5b Volk B, Barkoczy J, Hegedus E, Udvari S, Gacsalyi I, Mezei T, Pallagi K, Kompagne H, Levay G, Egyed A, Harsing LG, Spedding M, Simig G. J. Med. Chem. 2008; 51: 2522
    • 5c Christensen MK, Erichsen KD, Trojel-Hansen C, Tjornelund J, Nielsen SJ, Frydenvang K, Johansen TN, Nielsen B, Sehested M, Jensen PB, Lkaunieks M, Zaichenko A, Loza E, Kalvinsh L, Bjorkling F. J. Med. Chem. 2010; 53: 7140
    • 5d Jiang T, Kuhen KL, Wolff K, Yin H, Bieza K, Caldwell J, Bursulaya B, Yao-Hsing WuT, He Y. Bioorg. Med. Chem. Lett. 2006; 16: 2105
    • 6a Jia F, Liu K, Xi H, Lu S, Li Z. Tetrahedron Lett. 2014; 54: 6337
    • 6b Li YM, Shen YH, Chang KJ, Yang SD. Tetrahedron Lett. 2014; 70: 1991
    • 6c Wei WT, Zhou M, Fan J, Liu W, Song R, Liu Y, Hu M, Xie P, Li J. Angew. Chem. Int. Ed. 2013; 52: 3638
    • 6d Li X, Xu X, Hu P, Xiao X, Zhou C. J. Org. Chem. 2013; 78: 7343
    • 6e Tang S, Zhou D, Wang YC. Eur. J. Org. Chem. 2014; 17: 3656
    • 6f Xu XS, Tang YC, Li XQ, Hong G, Fang MW, Du XH. J. Org. Chem. 2014; 79: 446
    • 6g Liu JD, Zhuang SB, Gui QW, Chen X, Yang ZY, Tan Z. Eur. J. Org. Chem. 2014; 15: 3196
    • 6h Gong W, Xu L, Ji T, Xie P, Qi X, Pittman CU. Jr, Zhou A. RSC Adv. 2014; 4: 6854
    • 7a Kong W, Merino E, Nevado C. Angew. Chem. Int. Ed. 2014; 53: 5078
    • 7b Kong W, Casimiro M, Fuentes N, Merino E, Nevado C. Angew. Chem. Int. Ed. 2013; 52: 13086
    • 7c Kong W, Casimiro M, Merino E, Nevado C. J. Am. Chem. Soc. 2013; 135: 14480
    • 7d Li L, Deng M, Zheng S, Xiong Y, Tan B, Liu X. Org. Lett. 2014; 16: 504
    • 8a Suzuki H, Takeuchi T, Mori T. J. Org. Chem. 1997; 61: 5944
    • 8b Taniguchi T, Fujii T, Ishibashi H. J. Org. Chem. 2010; 75: 8126
    • 8c Ridd JH. Chem. Soc. Rev. 1991; 20: 149
    • 8d Teuten EL, Loeppky RN. Org. Biomol. Chem. 2005; 3: 1097
    • 9a Li YM, Wei XH, Li XA, Yang SD. Chem. Commun. 2013; 49: 11701
    • 9b Wang H, Guo LN, Duan XH. Adv. Synth. Catal. 2013; 355: 2222
    • 9c Mu X, Mu T, Wang H, Guo Y, Liu G. J. Am. Chem. Soc. 2012; 134: 878
    • 9d Wei XH, Li YM, Zhou AX, Yang TT, Yang SD. Org. Lett. 2013; 15: 4151
  • 10 General Procedure for the Synthesis of Nitromethyl-Substituted Oxindole Derivatives N-Methyl-N-(phenylsulfonyl)methacrylamide (2.0 mmol, 1.0 equiv) was added to a dried sealed tube, followed by the addition of NaHCO3 (2 mmol, 1.0 equiv), NaNO2 (4.0 mmol, 2 equiv), K2S2O8 (2.0 equiv), and anhydrous MeCN (2 mL). The reaction mixture was stirred at 120 °C for 18 h. After the reaction was completed, the reaction mixture was cooled down to r.t. and diluted with EtOAc, then the combined organic layers were dried over Na2SO4, filtered, and concentrated in vacuum. The residue was purified by flash chromatography (PE–EtOAc, 25:1) to provide the title compound 3a as a sticky solid in a 88% yield. The same procedure for producing other compounds 3bj.1-Isopropyl-3-methyl-3-(nitromethyl)indolin-2-one (3a)Sticky solid. IR: 2925, 2854, 2359, 1714, 1611, 1556, 1452, 1357, 1213, 754 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.33–7.04 (arom. H, 4H), 4.96 (d, J=13.2 Hz, 1H), 4.77 (d, J=13.6 Hz, 1H), 4.68 (m, 1H), 1.56 (d, J=7.2 Hz, 6H), 1.40 (s, 3H) ppm. 13C NMR (100 Hz, CDCl3): δ = 21.9, 29.4, 31.9, 44.3, 46.8, 79.1, 110.5, 122.6, 129.0, 129.5, 142.4, 177.0. ESI-MS: m/z calcd for C13H16N2O3: 249.1239 [M + H]+; found: 249.1249.