Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(17): 2475-2479
DOI: 10.1055/s-0034-1379041
DOI: 10.1055/s-0034-1379041
letter
Substituent Effects and Structural Features of α,α-Dicyanoolefins and Ketene Dithioacetals on Directing Polyfunctionalized 2,6-Dicyanoanilines or Pyrazolo[1,5-a]pyridines
Further Information
Publication History
Received: 15 June 2014
Accepted after revision: 06 August 2014
Publication Date:
10 September 2014 (online)
Abstract
An efficient and facile synthesis of pyrazolo[1,5-a]pyridine and polyfunctionalized 2,6-dicyanoaniline derivatives via vinylogous Michael addition of cyclic or acyclic α,α-dicyanoolefins to electron-deficient ketene dithioacetals in the presence of hydrazine at room temperature is described. The prominent feature of this one-pot procedure is an apparent dichotomy in the nature of products, which is dictated by the structure and functionality of substrates.
Key words
α,α-dicyanoolefins - ketene dithioacetals - pyrazolo[1,5-a]pyridines - 2,6-dicyanoaniline - vinylogous Michael additionSupporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000083.
- Supporting Information
-
References and Notes
- 1a Chen YC, Xue D, Deng J.-G, Cui X, Zhu J, Jiang YZ. Tetrahedron Lett. 2004; 45: 1555
- 1b Xue D, Chen YC, Cui X, Wang QW, Zhu J, Deng JG. J. Org. Chem. 2005; 70: 3584
- 2a Xue D, Chen YC, Cun L.-F, Wang QW, Zhu J, Deng JG. Org. Lett. 2005; 7: 5293
- 2b Poulsen TB, Alemparte C, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 11614
- 2c Poulsen TB, Bell M, Jørgensen KA. Org. Biomol. Chem. 2006; 4: 63
- 3 Denmark SE. Jr, Heemstra JR, Beutner GL. Angew. Chem. Int. Ed. 2005; 44: 4682
- 4 Wang X.-S, Zhang MM, Li Q, Yao CS, Tu SJ. Tetrahedron 2007; 63: 5265
- 5a Belda O, Moberg C. Acc. Chem. Res. 2004; 37: 159
- 5b Trost BM, Machacek MR, Aponick A. Acc. Chem. Res. 2006; 39: 747
- 5c Kim JN, Lee HJ, Lee KY, Gong JH. Synlett 2002; 173
- 5d Cho CW, Krische MJ. Angew. Chem. Int. Ed. 2004; 43: 6689
- 5e Cho CW, Kong JR, Krische MJ. Org. Lett. 2004; 6: 1337
- 5f Park H, Cho CW, Krische MJ. J. Org. Chem. 2006; 71: 7892
- 5g Cui HL, Peng J, Feng X, Du W, Jiang K, Chen YC. Chem. Eur. J. 2009; 15: 1574
- 5h Singh V, Batra S. Tetrahedron 2008; 64: 4511
- 6a Córdova A. Acc. Chem. Res. 2004; 37: 102
- 6b Arend M, Westermann B, Risch N. Angew. Chem. Int. Ed. 1998; 37: 1044
- 6c Bur SK, Martin SF. Tetrahedron 2001; 57: 3221
- 6d Martin SF. Acc. Chem. Res. 2002; 35: 895
- 6e Liu TY, Cui HL, Long J, Li BJ, Wu Y, Ding LS, Chen YC. J. Am. Chem. Soc. 2007; 129: 1878
- 6f Niess B, Jørgensen KA. Chem. Commun. 2007; 1620
- 6g Maruoka K, Ooi T. Chem. Rev. 2003; 103: 3013
- 6h Hashimoto T, Maruoka K. Chem. Rev. 2007; 107: 5656
- 6i Lygo B, Allbutt B, James SR. Tetrahedron Lett. 2003; 44: 5629
- 6j Lygo B, Allbutt B, Kirton EH. M. Tetrahedron Lett. 2005; 46: 4461
- 7 Poulsen TB, Alemparte C, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 11614
- 8a Straus DS, Glass CK. Med. Res. Rev. 2001; 21: 185
- 8b Conti M. Anti Cancer Drugs 2006; 17: 1017
- 8c Hudlicky T, Price JD. Chem. Rev. 1989; 89: 1467
- 8d Hartley RC, Caldwell ST. J. Chem. Soc., Perkin Trans. 1 2000; 1: 477
- 8e Silva LF. Tetrahedron 2002; 58: 9137
- 8f Zheng Z, Zheng S, Zhang X, Lu X. Org. Lett. 2008; 10: 3267
- 9a Umemoto T. Chem. Rev. 1996; 96: 1757
- 9b Ma JA, Cahard D. Chem. Rev. 2004; 104: 6119
- 9c Ma JA, Cahard D. J. Fluorine Chem. 2007; 9: 975
- 9d Umemoto T, Ishihara S. Tetrahedron Lett. 1990; 31: 3579
- 9e Umemoto T, Ishihara S. J. Am. Chem. Soc. 1993; 115: 2156
- 9f Yagupol’skii LM, Maletina II, Kondratenko NV, Orda VV. Synthesis 1978; 835
- 9g Magnier E, Blazejewski JC, Tordeux M, Wakselman C. Angew. Chem. Int. Ed. 2006; 45: 1279
- 9h Noritake S, Shibata N, Nakamura S, Toru T, Shiro M. Eur. J. Org. Chem. 2008; 3465
- 10a Chen YC, Xue D, Deng JG, Cui X, Zhu J, Jiang YZ. Tetrahedron Lett. 2004; 45: 1555
- 10b Xue D, Chen YC, Cui X, Wang QW, Deng JG. J. Org. Chem. 2005; 70: 3584
- 10c Tian SK, Chen Y, Hang J, Tang L, McDaid P, Deng L. Acc. Chem. Res. 2004; 37: 621
- 10d Kacprzak K, Gawroński J. Synthesis 2001; 961
- 10e Jiang L, Zheng HT, Liu TY, Yue L, Chen YC. Tetrahedron 2007; 63: 5123
- 10f Takemoto Y. Org. Biomol. Chem. 2005; 3: 4299
- 10g Taylor MS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
- 10h Connon SJ. Chem. Eur. J. 2006; 12: 5418
- 10i Astruc D. Modern Arene Chemistry . Wiley-VCH; Weinheim: 2002
- 10j Xue D, Li J, Zhang ZT, Deng JG. J. Org. Chem. 2007; 72: 5443
- 10k Ding W, Su K, Chen Z. Tetrahedron Lett. 2009; 50: 636
- 11 Alizadeh A, Sedighian H, Bayat F. Synlett 2014; 25: 389
- 12 Fuson RC. Chem. Rev. 1935; 16: 1
- 13a Sepiol J, Milart P. Tetrahedron 1985; 41: 5261
- 13b Milart P, Wilamowski J, Sepiol JJ. Tetrahedron 1998; 54: 15643
- 13c Elagamey AG. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1988; 27: 766
- 13d Abdelrazek FM, Michael FA, Mohamed AE. Pharm. Chem. Life Sci. 2006; 339: 305
- 13e Schaefer H, Gewald K. J. Prakt. Chem. 1985; 327: 328
- 14 Peseke K, Bohn I. DD 142541 A1 19800702, 1980 ; Chem. Abstr. 1981, 94, 208577
- 15 Mowry DT. J. Am. Chem. Soc. 1943; 65: 991
- 16a Wang H, Zhao YL, Ren CQ, Diallo A, Liu Q. Chem. Commun. 2011; 47: 12316
- 16b Gao X, Di CA., Hu Y, Yang X, Fan H, Zhang F, Liu Y, Li H, Zhu D. J. Am. Chem. Soc. 2010; 132: 3697
- 16c Hu Y, Qin Y, Gao X, Zhang F, Di CA, Zhao Z, Li H, Zhu D. Org. Lett. 2012; 14: 292
- 17 Weir MR. S, Hyne JB. Can. J. Chem. 1964; 42: 1440
- 18 2,7-Diamino-5-phenylpyrazolo[1,5-a]pyridine-3,6-dicarbonitrile (3a) – General Procedure for the Preparation of Compounds 3a,b,e,f and 4a–d To a solution of α,α-dicyanoolefin 1 (1 mmol) and ketene dithioacetal 2 (1 mmol) in EtOH (3 mL) was added Et3N (1 mmol), and the solution was stirred for 30 min at r.t. Then, excess hydrazine was added to mixture. Upon completion (2 h, monitoring by TLC), the mixture was filtered and the precipitate washed with EtOH (2 × 4 mL) to afford the pure products 3a,b,e,f and 4a–d. Representative Analytical Data 2,7-Diamino-5-(phenyl)pyrazolo[1,5-a]pyridine-3,6-dicarbonitrile (3a) White powder; yield 0.24 g, (87%); mp >300 °C. IR (KBr): 3426, 3331 and 3234 (NH2), 2209 (CN), 1612, 1543 and 1490 (Ar) cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 6.56 (s, 2 H, NH2), 6.66 (s, 1 H, CH), 7.52 (t, 2 H, 3 J HH = 6.0 Hz, 2 CH meta of Ph), 7.54 (t, H, 3 J HH = 6.0 Hz, CH para of Ph), 7.61 (d, 2 H, 3 J HH = 5.6 Hz, 2 CH ortho of Ph), 7.82 (s, 2 H, NH2). 13C NMR (100.0 MHz, DMSO-d 6): δ = 69.29 (C6CN), 75.14 (C3CN), 100.16 (CH), 114.17(CN), 116.62 (CN), 128.40 (2 CH meta of Ph), 128.55 (2 CH ortho of Ph), 129.11 (CH para of Ph), 137.03 (C5-Ph), 143.50 (C ipso of Ph), 144.31 (C3a), 146.95 (C7-NH2), 160.17 (C2-NH2). MS: m/z = 274 (46) [M+], 246 (3), 219 (7), 204 (7), 194 (8), 178 (9), 164 (23), 151 (19), 140 (35), 127 (36), 100 (37), 88 (38), 77 (100), 63 (92), 51 (84). Anal. Calcd (%) for C15H10N6: C, 65.69; H, 3.67; N, 30.64. Found: C, 65.58; H, 3.57; N, 30.56. 2-Amino-4-methylsulfanyl-6-phenylisophthalonitrile (4a) White powder; yield 0.20 g (76%); mp 248–250 °C. IR (KBr): 3462, 3368 and 3229 (NH2), 2212 (CN), 1629, 1554 and 1432 (Ar) cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 2.61 (s, 3 H, CH3), 6.58 (s, 1 H, CH), 6.82 (s, 2 H, NH2), 7.52–7.59 (m, 5 H, CH of Ar). 13C NMR (100.0 MHz, DMSO-d 6): δ = 13.93 (SCH3), 91.28 (C1 and C3), 112.80 (CH), 114.46 (CN), 116.14 (CN), 128.41 (2 CH meta of Ph), 128.50 (2 CH ortho of Ph), 129.42 (CH para of Ar), 137.61 (C ipso of Ph), 149.67 (C6), 151.17 (CSCH3), 153.48 (C2-NH2). MS: m/z = 265 (100) [M+], 249 (6), 232 (50), 220 (12), 205 (24), 191 (13), 178 (8), 164 (15), 152 (13), 140 (8), 128 (4), 113 (4), 102 (4), 88 (4), 77 (13), 63 (8), 51 (15). Anal. Calcd (%) for C15H11N3S: C, 67.90; H, 4.18; N, 15.84. Found: C, 67.81; H, 4.19; N, 15.78