Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2015; 47(02): 216-220
DOI: 10.1055/s-0034-1379103
DOI: 10.1055/s-0034-1379103
paper
Microwave-Assisted Copper-Powder-Catalyzed Coupling and Cyclization of β-Bromo-α,β-unsaturated Carboxylic Acids with 1,3-Diketones Leading to 2H-Pyran-2-ones
Further Information
Publication History
Received: 02 July 2014
Accepted after revision: 14 August 2014
Publication Date:
02 October 2014 (online)
Abstract
β-Bromo-α,β-unsaturated carboxylic acids were coupled and cyclized with 1,3-diketones by microwave irradiation in the presence of a catalytic amount of copper powder and base to give the corresponding 2H-pyran-2-ones in good to high yields.
-
References
- 1a Parker SR, Cutler HG, Jacyno JM, Hill RA. J. Agric. Food Chem. 1997; 45: 2774
- 1b Evidente A, Cabras A, Maddau L, Serra S, Andolfi A, Motta A. J. Agric. Food Chem. 2003; 51: 6957
- 1c Dong Y, Nakagawa-Goto K, Lai CY, Morris-Natschke SL, Bastow KF, Lee KH. Bioorg. Med. Chem. Lett. 2011; 21: 2341
- 1d Fairlamb IJ. S, Marrison LR, Dickinson JM, Lu FJ, Schmidt JP. Bioorg. Med. Chem. 2004; 12: 4285
- 1e Barrero AF, Oltra JE, Herrador MM, Cabrera E, Sanchez JF, Quílez JF, Rojas FJ, Reyes JF. Tetrahedron 1993; 49: 141
- 1f Marrison LR, Dickinson JM, Fairlamb IJ. S. Bioorg. Med. Chem. Lett. 2002; 12: 3509
- 1g Marrison LR, Dickinson JM, Fairlamb IJ. S. Bioorg. Med. Chem. Lett. 2003; 13: 2667
- 1h Vara Prasad JV. N, Para KS, Lunney EA, Ortwine DF, Dunbar JB. Jr, Ferguson D, Tummino PJ, Hupe D, Tait BD, Domagala JM, Humblet C, Bhat TN, Liu B, Guerin DM. A, Baldwin ET, Erickson JW, Sawyer TK. J. Am. Chem. Soc. 1994; 116: 6989
- 1i Shi X, Leal WS, Liu Z, Schrader E, Meinwald J. Tetrahedron Lett. 1995; 36: 71
- 1j Chu XP, Zhou QF, Zhao S, Ge FF, Fu M, Chen JP, Lu T. Chin. Chem. Lett. 2013; 24: 120
- 2 Yao T, Larock RC. J. Org. Chem. 2003; 68: 5936 ; and references cited therein
- 3 Goel A, Ram VJ. Tetrahedron 2009; 65: 7865
- 4a Afarinkia K, Vinader V, Nelson TD, Posner GH. Tetrahedron 1992; 48: 9111
- 4b Kranjc K, Kočevar M. ARKIVOC 2013; (i): 333 ; http://www.arkat-usa.org/home
- 5 Cai S, Wang F, Xi C. J. Org. Chem. 2012; 77: 2331
- 6 Fan X, He Y, Cui L, Guo S, Wang J, Zhang X. Eur. J. Org. Chem. 2012; 673
- 7 Kálai T, Bognár B, Zsolnai D, Berente Z, Hideg K. Synthesis 2012; 44: 3655
- 8a Cho CS, Patel DB, Shim SC. Tetrahedron 2005; 61: 9490
- 8b Cho CS, Shim HS. Tetrahedron Lett. 2006; 47: 3835
- 8c Cho CS, Patel DB. Tetrahedron 2006; 62: 6388
- 8d Cho CS, Kim JU, Choi H.-J. J. Organomet. Chem. 2008; 693: 3677
- 8e Cho CS, Kim HB, Lee SY. J. Organomet. Chem. 2010; 695: 1744
- 8f Cho CS, Kim HB. Catal. Lett. 2010; 140: 116
- 8g Cho CS, Kim HB. J. Organomet. Chem. 2011; 696: 3264
- 8h Lee HK, Cho CS. Appl. Organomet. Chem. 2012; 26: 185
- 8i Lee HK, Cho CS. Appl. Organomet. Chem. 2012; 26: 406
- 8j Cho CS, Son JI, Yoon NS. Appl. Organomet. Chem. 2012; 26: 499
- 8k Lee HK, Cho CS. Appl. Organomet. Chem. 2012; 26: 570
- 8l Son JI, Cho CS, Choi H.-J. Appl. Organomet. Chem. 2013; 27: 380
- 8m Bae YK, Cho CS. Synlett 2013; 24: 1848
- 8n Bae YK, Cho CS. Appl. Organomet. Chem. 2014; 28: 225
- 9a Arnold Z, Holly A. Collect. Czech. Chem. Commun. 1961; 26: 3059
- 9b Coates RM, Senter PD, Baker WR. J. Org. Chem. 1982; 47: 3597
- 10a Brahma S, Ray JK. Tetrahedron 2008; 64: 2883
- 10b Jana R, Chatterjee I, Samanta S, Ray JK. Org. Lett. 2008; 10: 4795
- 10c Karthikeyan P, Meena Rani A, Saiganesh R, Balasubramanian KK, Kabilan S. Tetrahedron 2009; 65: 811
- 10d Samanta S, Jana R, Ray JK. Tetrahedron Lett. 2009; 50: 6751
- 10e Nandi S, Ray JK. Tetrahedron Lett. 2009; 50: 6993
- 10f Jana R, Paul S, Biswas A, Ray JK. Tetrahedron Lett. 2010; 51: 273
- 10g Samanta S, Yasmin N, Kundu D, Ray JK. Tetrahedron Lett. 2010; 51: 4132
- 10h Yasmin N, Ray JK. Synlett 2010; 924
- 10i Paul S, Gorai T, Koley A, Ray JK. Tetrahedron Lett. 2011; 52: 4051
- 11 Ho SL, Cho CS. Synlett 2013; 24: 2705
- 12 Dalcanale E, Montanari F. J. Org. Chem. 1986; 51: 567
- 13 Similar treatment of 1a with 2a under conventional heating conditions (110 °C, 24 h) afforded 3a in 65% yield.
- 14 3a was not formed at all in the absence of copper powder.
- 15 Performing the reaction on a larger scale (5 times) resulted in a slightly lower yield of 3a (71%).
- 16 Ren H, Li Z, Knochel P. Chem. Asian J. 2009; 2: 416
- 17 Dieter RK, Fishpaugh JR. J. Org. Chem. 1998; 53: 2031