Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2015; 47(02): 181-186
DOI: 10.1055/s-0034-1379206
DOI: 10.1055/s-0034-1379206
paper
Microwave-Assisted Copper-Catalyzed Cross-Coupling Reaction of Thiols with Aryl Iodides in Water
Further Information
Publication History
Received: 26 July 2014
Accepted after revision: 01 September 2014
Publication Date:
15 October 2014 (online)
Abstract
Microwave-promoted C–S bond formation from thiols and aryl iodides in the presence of a copper catalyst is reported. A combination of copper(II) oxide and 1,10-phenanthroline catalyzes this reaction. A variety of aryl iodides react smoothly with thiols to provide the corresponding aryl sulfides in good to excellent yields. Notably, the reactions proceed in water with a short reaction time (30 minutes). This system shows broad functional-group tolerance; amino, chloro, bromo, acetyl, and nitro groups are unaffected by the reaction conditions.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000084. Included are 1H and 13C NMR spectra for compounds 3a–v.
- Supporting Information
-
References
- 1 These authors contributed equally to this work.
- 2a Hutton J, Jones AD, Lee SA, Martin DM. G, Meyrick BR, Patel I, Peardon RF, Powell L. Org. Process Res. Dev. 1997; 1: 61
- 2b De Martino G, Edler MC, La Regina G, Coluccia A, Barbera MC, Barrow D, Nicholson RI, Chiosis G, Brancale A, Hamel E, Artico M, Silvestri R. J. Med. Chem. 2006; 49: 947
- 2c Kaldor SW, Kalish VJ, Davies JF, Shetty BV, Fritz JE, Appelt K, Burgess JA, Campanale KM, Chirgadze NY, Clawson DK, Dressman BA, Hatch SD, Khalil DA, Kosa MB, Lubbehusen PP, Muesing MA, Patick AK, Reich SH, Su KS, Tatlock JH. J. Med. Chem. 1997; 40: 3979
- 2d Liu G, Huth JR, Olejniczak ET, Mendoza R, DeVries P, Leitza S, Reilly EB, Okasinski GF, Fesik SW, von Geldern TW. J. Med. Chem. 2001; 44: 1202
- 3 Brandsma L, Arens JF In The Chemistry of the Ether Linkage . Patai S. Wiley Interscience; London: 1967. Chap. 13, 553
- 4a Dondoni A. Angew. Chem. Int. Ed. 2008; 47: 8995
- 4b Lowe AB. Polym. Chem. 2010; 1: 17
- 4c Liu J, Yang J, Yang Q, Wang G, Li Y. Adv. Funct. Mater. 2005; 15: 1297
- 4d Van Bierbeek A, Gingras M. Tetrahedron Lett. 1998; 39: 6283
- 5a Magens S, Plietker B. Chem. Eur. J. 2011; 17: 8807
- 5b Katritzky AR, Shestopalov AA, Suzuki K. Synthesis 2004; 1806
- 5c Iimura S, Manabe K, Kobayashi S. Chem. Commun. 2002; 94
- 5d Ahmad S, Iqbal J. Tetrahedron Lett. 1986; 27: 3791
- 5e Spessard GO, Chan WK, Masamune S. Org. Synth. Coll. Vol. VII . Wiley; London: 1990: 81
- 5f Silveira CC, Braga AL, Larghi EL. Organometallics 1999; 18: 5183
- 5g Meshram HM, Reddy GS, Mindu KH, Yadav JS. Synlett 1998; 877
- 6a Lee C.-F, Liu Y.-C, Badsara SS. Chem. Asian J. 2014; 9: 706
- 6b Liu H, Jiang X. Chem. Asian J. 2013; 8: 2546
- 6c Eichman CC, Stambuli JP. Molecules 2011; 16: 590
- 6d Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
- 6e Beletskaya IP, Ananikov VP. Eur. J. Org. Chem. 2007; 3431
-
6f Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
- 6g Kondo T, Mitsudo T.-a. Chem. Rev. 2000; 100: 3205
- 6h Procter DJ. J. Chem. Soc., Perkin Trans. 1 2001; 335
- 7a Migita T, Shimizu T, Asami Y, Shiobara J, Kato Y, Kosugi M. Bull. Chem. Soc. Jpn. 1980; 53: 1385
- 7b Kosugi M, Ogata T, Terada M, Sano H, Migita T. Bull. Chem. Soc. Jpn. 1985; 58: 3657
- 7c Bryan CS, Braunger JA, Lautens M. Angew. Chem. Int. Ed. 2009; 48: 7064
- 7d Kuhn M, Falk FC, Paradies J. Org. Lett. 2011; 13: 4100
- 7e Sayah M, Organ MG. Chem. Eur. J. 2011; 17: 11719
- 7f Qiao Z.-J, Liu H, Xiao X, Fu Y, Wei J, Li Y.-X, Jiang X.-F. Org. Lett. 2013; 15: 2594
- 8a Chen Y.-J, Chen H.-H. Org. Lett. 2006; 8: 5609
- 8b Taniguchi N. J. Org. Chem. 2007; 72: 1241
- 8c Cheng J.-H, Yi C.-L, Liu T.-J, Lee C.-F. Chem. Commun. 2012; 48: 8440
- 8d Yi C.-L, Liu T.-J, Cheng J.-H, Lee C.-F. Eur. J. Org. Chem. 2013; 3910
- 8e Bates CG, Gujadhur RK, Venkataraman D. Org. Lett. 2002; 4: 2803
- 9a Percec V, Bae J.-Y, Hill DH. J. Org. Chem. 1995; 60: 6895
-
9b Zhang Y, Ngeow KC, Ying JY. Org. Lett. 2007; 9: 3495
- 10a Wu J.-R, Lin C.-H, Lee C.-F. Chem. Commun. 2009; 4450
- 10b Correa A, Carril M, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 2880
- 10c Wang H.-B, Wang L, Shang J.-S, Li X, Wang H.-Y, Gui J, Lei A.-W. Chem. Commun. 2012; 48: 76
- 10d Lin Y.-Y, Wang Y.-J, Lin C.-H, Chen J.-H, Lee C.-F. J. Org. Chem. 2012; 77: 6100
- 11a Reddy VP, Kumar AV, Swapna K, Rao KR. Org. Lett. 2009; 11: 1697
- 11b Reddy VP, Swapna K, Kumar AV, Rao KR. J. Org. Chem. 2009; 74: 3189
- 12 Wong Y.-C, Jayanth TT, Cheng C.-H. Org. Lett. 2006; 8: 5613
-
13 Morita N, Krause N. Angew. Chem. Int. Ed. 2006; 45: 1897
- 14 Liu T.-J, Yi C.-L, Chan C.-C, Lee C.-F. Chem. Asian J. 2013; 8: 1029
-
15 Das R, Chakraborty D. Tetrahedron Lett. 2012; 53: 7023
- 16a Minakata S, Komatsu M. Chem. Rev. 2009; 109: 711
- 16b Blackmond DG, Armstrong A, Coombe V, Wells A. Angew. Chem. Int. Ed. 2007; 46: 3798
- 16c Organic Synthesis in Water . Grieco PA. Blackie; London: 1998
- 16d Mase N, Barbas CF. III. Org. Biomol. Chem. 2010; 8: 4043
- 16e Lipshutz BH, Ghorai S. Aldrichimica Acta 2008; 41: 59
- 16f Mondal J, Borah P, Modak A, Zhao Y, Bhaumik A. Org. Process Res. Dev. 2014; 18: 257
- 16g Kundu D, Chatterjee T, Ranu BC. Adv. Synth. Catal. 2013; 355: 2285
- 16h Pal N, Bhaumik A. Dalton Trans. 2012; 41: 9161
- 16i Feng Y.-S, Qi H.-X, Wang W.-C, Liang Y.-F, Xu H.-J. Tetrahedron Lett. 2012; 53: 2914
- 16j Ding Q, Liu X, Cao B, Zong Z, Peng Y. Tetrahedron Lett. 2011; 52: 1964
- 16k Hirai Y, Uozumi Y. Chem. Lett. 2011; 40: 934
- 16l Damodara D, Arundhathi R, Likhar PR. Catal. Sci. Technol. 2013; 3: 797
- 16m Velmathi S, Reena V, Pal RP, Vinu A. Catal. Lett. 2010; 135: 148
- 16n Velmathi S, Vijayaraghavan R, Amarendar C, Pal RP, Vinu A. Synlett 2010; 2733
- 16o Xu H.-J, Liang Y.-F, Zhoua X.-F, Feng Y.-S. Org. Biomol. Chem. 2012; 10: 2562
- 16p Rout L, Saha P, Jammi S, Punniyamurthy T. Eur. J. Org. Chem. 2008; 640
-
16q Xu H.-J, Liang Y.-F, Cai Z.-Y, Qi H.-X, Yang C.-Y, Feng Y.-S. J. Org. Chem. 2011; 76: 2296
- 16r Herrero MT, SanMartin R, Domínguez E. Tetrahedron 2009; 65: 1500
- 17a Appukkuttan P, Van der Eycken E. Eur. J. Org. Chem. 2008; 1133
- 17b Kappe CO. Angew. Chem. Int. Ed. 2004; 43: 6250
- 17c Lidström P, Tierney J, Wathey B, Westman J. Tetrahedron 2001; 57: 9225
- 17d Larhed M, Moberg C, Hallberg A. Acc. Chem. Res. 2002; 35: 717
- 18a Bagley MC, Dix MC, Fusillo V. Tetrahedron Lett. 2009; 50: 3661
- 18b Tan C.-M, Chen GS, Chena C.-S, Cherna J.-W. J. Chin. Chem. Soc. (Taipei) 2011; 58: 94
- 18c Bagley MC, Davis T, Dix MC, Fusillo V, Pigeaux M, Rokicki MJ, Kipling D. J. Org. Chem. 2009; 74: 8336
- 18d Ranu BC, Saha A, Jana R. Adv. Synth. Catal. 2007; 349: 2690
- 19a Liu Y.-C, Lee C.-F. Synlett 2013; 24: 2320
- 19b Cheng C.-H, Ramesh C, Kao H.-L, Wang Y.-J, Chan C.-C, Lee C.-F. J. Org. Chem. 2012; 77: 10369
- 19c Lai C.-S, Kao H.-L, Wang Y.-J, Lee C.-F. Tetrahedron Lett. 2012; 53: 4365
- 19d Kao H.-L, Lee C.-F. Org. Lett. 2011; 13: 5204
- 19e Kao H.-L, Chen C.-K, Wang Y.-J, Lee C.-F. Eur. J. Org. Chem. 2011; 1776
- 19f Chen C.-K, Chen Y.-W, Lin C.-H, Lin H.-P, Lee C.-F. Chem. Commun. 2010; 46: 282
- 19g Liu Y.-C, Lee C.-F. Green Chem. 2014; 16: 357
- 19h Yi C.-L, Huang Y.-T, Lee C.-F. Green Chem. 2013; 15: 2476
- 19i Zeng J.-W, Liu Y.-C, Hsiech P.-A, Huang Y.-T, Yi C.-L, Badsara SS, Lee C.-F. Green Chem. 2014; 16: 2644
- 19j Huang Y.-T, Lu S.-Y, Yi C.-L, Lee C.-F. J. Org. Chem. 2014; 79: 4561
- 19k Huang Y.-T, Tsai W.-T, Badsara SS, Chan C.-C, Lee C.-F. J. Chin. Chem. Soc (Taipei) 2014; 61: 961
- 19l Liou J.-C, Badsara SS, Huang Y.-T, Lee C.-F. RSC Adv. 2014; 4: 41237
- 19m Badsara SS, Liu Y.-C, Hsieh P.-A, Zeng J.-W, Lu S.-Y, Liu Y.-W, Lee C.-F. Chem. Commun. 2014; 50: 11374
- 20a Wang H, Jiang L, Chen T, Li Y. Eur. J. Org. Chem. 2010; 12: 2324
- 20b Kun S, Yatao Q, Yiwu Y, Dayong Z, Sheng J. Synlett 2012; 23: 2853
- 20c Baig RB. N, Varma RS. Green Chem. 2013; 15: 398
- 20d Ajiki K, Hirano M, Tanaka K. Org. Lett. 2005; 7: 4193
-
20e Bastug G, Nolan SP. J. Org. Chem. 2013; 78: 9303
For reviews on transition-metal-catalyzed C–S coupling reaction, see:
For selected examples, see: