Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(19): 2753-2756
DOI: 10.1055/s-0034-1379477
DOI: 10.1055/s-0034-1379477
letter
Covalently Bonded Ionic Liquid-Type Sulfamic Acid onto SBA-15: SBA-15/NHSO3H as a Highly Active, Reusable, and Selective Green Catalyst for Solvent-Free Synthesis of Polyhydroquinolines and Dihydropyridines
Further Information
Publication History
Received: 29 August 2014
Accepted after revision: 21 September 2014
Publication Date:
21 October 2014 (online)
Abstract
Amine-functionalized ordered mesoporous organic–inorganic hybrid materials are designed as solid supports to covalently immobilize the SO3H group to achieve sulfamic acid (SBA-15/ NHSO3H) as a novel catalyst. SBA-15/NHSO3H as ionic liquid-type heterogeneous catalyst could be separated easily from reaction products and recycled, showing superiority over homogeneous catalysts.
-
References and Notes
- 1a Anastas PT, Warner JC. Green Chemistry: Theory and Practice . Oxford University Press; Oxford: 1998: 1-30
- 1b Choudhary D, Paul S, Gupta R, Clark JH. Green Chem. 2006; 8: 479
- 3a Liu J, Yang Q, Kapoor MP, Setoyama N, Inagaki S, Yang J, Zhang L. J. Phys. Chem. B 2005; 109: 12250
- 3b Yang Q, Kapoor M, Inagaki S. J. Am. Chem. Soc. 2002; 124: 9694
- 3c Kapoor M, Yang Q, Goto Y, Inagaki S. Chem. Lett. 2003; 32: 914
- 4a Yang Q, Kapoor M, Shirokura N, Ohashi M, Inagaki S, Kondo JN, Domen K. J. Mater. Chem. 2005; 15: 666
- 4b Karimi B, Zareyee D. Org. Lett. 2008; 10: 3989
- 5a Koukabi N, Kolvari E, Khazaei A, Zolfigol MA, Shirmardi-Shaghasemi B, Khavasi HR. Chem. Commun. 2011; 47: 9230
- 5b Yalçin I, Ören I, Şener E, Akin A, Uçartürk N. Eur. J. Med. Chem. 1992; 27: 401
- 5c Sausins A, Duburs G. Heterocycles 1988; 27: 279
- 5d Sridhar R, Perumal PT. Tetrahedron 2005; 61: 2465
- 5e Rostamnia S, Lamei K. Chin. Chem. Lett. 2012; 23: 930
- 5f Alizadeh A, Rostamnia S. Synthesis 2010; 4057
- 6a Ko S, Sastry M, Lin C, Yao C. Tetrahedron Lett. 2005; 46: 5771
- 6b Das B, Ravikanth B, Ramu R, Rao B. Chem. Pharm. Bull. 2006; 54: 1044
- 6c Ko S, Yao C. Tetrahedron 2006; 62: 7293
- 7a Rostamnia S, Lamei K. Synthesis 2011; 3080
- 7b Rostamnia S, Lamei K, Mohammadquli M, Sheykhan M, Heydari A. Tetrahedron Lett. 2012; 53: 5257
- 7c Rostamnia S, Zabardasti A. J. Fluorine Chem. 2012; 144: 69
- 7d Rostamnia S, Karimi Z, Ghavidel M. J. Sulfur Chem. 2012; 33: 313
- 7e Rostamnia S, Doustkhah E. J. Fluorine Chem. 2013; 153: 1
- 7f Rostamnia S, Xin H, Nouruzi N. Microporous Mesoporous Mater. 2013; 179: 99
- 7g Rostamnia S, Nuri A, Xin H, Pourjavadi A, Hosseini SH. Tetrahedron Lett. 2013; 54: 3344
- 7h Rostamnia S, Xin H, Liu X, Lamei K. J. Mol. Catal. A: Chem. 2013; 374-375: 85
- 7i Rostamnia S, Xin H. Appl. Organomet. Chem. 2013; 27: 348
- 7j Rostamnia S, Pourhassan F. Chin. Chem. Lett. 2013; 24: 401
- 7k Rostamnia S, Doustkhah E. Functionalized Porous Nanoreactors in Organic Reactions: Mesoporous Solid Support as a Nanocatalyst. LAP LAMBERT Academic Publishing; Saarbrücken: 2013
- 8 Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. Science 1998; 279: 548
- 9 Zolfigol MA. Tetrahedron 2001; 57: 9509
-
10
General Procedure for the Synthesis of Polyhydroquinolines and Dihydropyridines
A mixture of aldehyde (1 mmol), β-dicarbonyl compound (1 or 2 mmol), NH4OAc (2.5 mmol), dimedone (1 mmol, when used), and SBA-15/NHSO3H (5 mol%) was stirred at 55 °C. After complete disappearance of starting material as indicated by TLC, the resulting mixture was diluted with hot EtOAc (10 mL) and filtered. The catalyst was completely recovered from the residue.
Representative Spectroscopic Data
Methyl 2,7,7-Trimethyl-5-oxo 4-Phenyl-1,4,5,6,7,8-hexahydro-3-quinolinecarboxylate (4a) 1H NMR (300.13 MHz, CDCl3): δ = 0.94 (s, 3 H), 1.09 (s, 3 H), 2.11–2.40 (m, 8 H), 3.62 (s, 3 H), 5.08 (s, 1 H), 7.08–7.31 (m, 5 H). Diethyl 2,6-Dimethyl-4-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (5a) IR (KBr): 3342, 1700, 1657, 1473, 1198, 1129 cm–1. 1H NMR (300.13 MHz, CDCl3): δ = 1.23 (t, 3 J HH = 7.0 Hz, 6 H), 2.34 (s, 6 H), 4.12 (q, 3 J HH = 7.0 Hz, 4 H), 4.91 (s, 1 H), 5.68 (s, 1 H), 7.07–7.43 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 14.91, 19.56, 39.43, 59.82, 103.14, 127.25, 127.32, 128.34, 129.61, 146.19, 148.25, 167.34.