Synlett 2014; 25(19): 2753-2756
DOI: 10.1055/s-0034-1379477
letter
© Georg Thieme Verlag Stuttgart · New York

Covalently Bonded Ionic Liquid-Type Sulfamic Acid onto SBA-15: SBA-15/NHSO3H as a Highly Active, Reusable, and Selective Green Catalyst for Solvent-Free Synthesis of Polyhydroquinolines and Dihydropyridines

Sadegh Rostamnia*
a   Organic and Nano Group (ONG), Department of Chemistry, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran   Fax: +98(421)2276066   Email: srostamnia@gmail.com   Email: rostamnia@maragheh.ac.ir
,
Asadollah Hassankhani
b   Department of New Materials, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, PO Box 76315-117, Kerman, Iran
› Author Affiliations
Further Information

Publication History

Received: 29 August 2014

Accepted after revision: 21 September 2014

Publication Date:
21 October 2014 (online)


Abstract

Amine-functionalized ordered mesoporous organic–inorganic hybrid materials are designed as solid supports to covalently immobilize the SO3H group to achieve sulfamic acid (SBA-15/ NHSO3H) as a novel catalyst. SBA-15/NHSO3H as ionic liquid-type heterogeneous catalyst could be separated easily from reaction products and recycled, showing superiority over homogeneous catalysts.

Supporting Information

 
  • References and Notes

    • 1a Anastas PT, Warner JC. Green Chemistry: Theory and Practice . Oxford University Press; Oxford: 1998: 1-30
    • 1b Choudhary D, Paul S, Gupta R, Clark JH. Green Chem. 2006; 8: 479
    • 2a Tanaka K, Toda F. Chem. Rev. 2000; 100: 1025
    • 2b Nishina Y, Takami K. Green Chem. 2012; 14: 2380
    • 3a Liu J, Yang Q, Kapoor MP, Setoyama N, Inagaki S, Yang J, Zhang L. J. Phys. Chem. B 2005; 109: 12250
    • 3b Yang Q, Kapoor M, Inagaki S. J. Am. Chem. Soc. 2002; 124: 9694
    • 3c Kapoor M, Yang Q, Goto Y, Inagaki S. Chem. Lett. 2003; 32: 914
    • 4a Yang Q, Kapoor M, Shirokura N, Ohashi M, Inagaki S, Kondo JN, Domen K. J. Mater. Chem. 2005; 15: 666
    • 4b Karimi B, Zareyee D. Org. Lett. 2008; 10: 3989
    • 5a Koukabi N, Kolvari E, Khazaei A, Zolfigol MA, Shirmardi-Shaghasemi B, Khavasi HR. Chem. Commun. 2011; 47: 9230
    • 5b Yalçin I, Ören I, Şener E, Akin A, Uçartürk N. Eur. J. Med. Chem. 1992; 27: 401
    • 5c Sausins A, Duburs G. Heterocycles 1988; 27: 279
    • 5d Sridhar R, Perumal PT. Tetrahedron 2005; 61: 2465
    • 5e Rostamnia S, Lamei K. Chin. Chem. Lett. 2012; 23: 930
    • 5f Alizadeh A, Rostamnia S. Synthesis 2010; 4057
    • 6a Ko S, Sastry M, Lin C, Yao C. Tetrahedron Lett. 2005; 46: 5771
    • 6b Das B, Ravikanth B, Ramu R, Rao B. Chem. Pharm. Bull. 2006; 54: 1044
    • 6c Ko S, Yao C. Tetrahedron 2006; 62: 7293
    • 7a Rostamnia S, Lamei K. Synthesis 2011; 3080
    • 7b Rostamnia S, Lamei K, Mohammadquli M, Sheykhan M, Heydari A. Tetrahedron Lett. 2012; 53: 5257
    • 7c Rostamnia S, Zabardasti A. J. Fluorine Chem. 2012; 144: 69
    • 7d Rostamnia S, Karimi Z, Ghavidel M. J. Sulfur Chem. 2012; 33: 313
    • 7e Rostamnia S, Doustkhah E. J. Fluorine Chem. 2013; 153: 1
    • 7f Rostamnia S, Xin H, Nouruzi N. Microporous Mesoporous Mater. 2013; 179: 99
    • 7g Rostamnia S, Nuri A, Xin H, Pourjavadi A, Hosseini SH. Tetrahedron Lett. 2013; 54: 3344
    • 7h Rostamnia S, Xin H, Liu X, Lamei K. J. Mol. Catal. A: Chem. 2013; 374-375: 85
    • 7i Rostamnia S, Xin H. Appl. Organomet. Chem. 2013; 27: 348
    • 7j Rostamnia S, Pourhassan F. Chin. Chem. Lett. 2013; 24: 401
    • 7k Rostamnia S, Doustkhah E. Functionalized Porous Nanoreactors in Organic Reactions: Mesoporous Solid Support as a Nanocatalyst. LAP LAMBERT Academic Publishing; Saarbrücken: 2013
  • 8 Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. Science 1998; 279: 548
  • 9 Zolfigol MA. Tetrahedron 2001; 57: 9509
  • 10 General Procedure for the Synthesis of Polyhydroquinolines and Dihydropyridines A mixture of aldehyde (1 mmol), β-dicarbonyl compound (1 or 2 mmol), NH4OAc (2.5 mmol), dimedone (1 mmol, when used), and SBA-15/NHSO3H (5 mol%) was stirred at 55 °C. After complete disappearance of starting material as indicated by TLC, the resulting mixture was diluted with hot EtOAc (10 mL) and filtered. The catalyst was completely recovered from the residue. Representative Spectroscopic Data
    Methyl 2,7,7-Trimethyl-5-oxo 4-Phenyl-1,4,5,6,7,8-hexahydro-3-quinolinecarboxylate (4a)
    1H NMR (300.13 MHz, CDCl3): δ = 0.94 (s, 3 H), 1.09 (s, 3 H), 2.11–2.40 (m, 8 H), 3.62 (s, 3 H), 5.08 (s, 1 H), 7.08–7.31 (m, 5 H). Diethyl 2,6-Dimethyl-4-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (5a) IR (KBr): 3342, 1700, 1657, 1473, 1198, 1129 cm–1. 1H NMR (300.13 MHz, CDCl3): δ = 1.23 (t, 3 J HH = 7.0 Hz, 6 H), 2.34 (s, 6 H), 4.12 (q, 3 J HH = 7.0 Hz, 4 H), 4.91 (s, 1 H), 5.68 (s, 1 H), 7.07–7.43 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 14.91, 19.56, 39.43, 59.82, 103.14, 127.25, 127.32, 128.34, 129.61, 146.19, 148.25, 167.34.