Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2015; 47(12): 1683-1695
DOI: 10.1055/s-0034-1379920
DOI: 10.1055/s-0034-1379920
review
Applications of Ferrocenium Salts in Organic Synthesis
Further Information
Publication History
Received: 27 February 2015
Accepted after revision: 09 April 2015
Publication Date:
23 April 2015 (online)
Abstract
Ferrocenium salts can be easily obtained from ferrocene by either synthetic preparation or in situ reaction. The ferrocenium ion can act as a one-electron oxidant and thus initiate or promote a range of radical processes. Ferrocene itself can donate electrons to suitable substrates, resulting in useful transformations. Ferrocenium salts can also act as mild Lewis acids. This paper highlights various uses of ferrocenium ions in organic reactions.
1 Introduction
2 Ferrocenium Salts as Lewis Acids
3 Ferrocenium Salts as One-Electron Oxidants
4 Ferrocene as an Electron Donor
5 Catalysis with Other Ferrocenium Derivatives
6 Conclusions
-
References
- 1 Dai L.-X, Hou X.-L. Chiral Ferrocenes in Asymmetric Catalysis . Wiley-VCH; Weinheim: 2010
- 2 Štepnička P. Ferrocene: Ligands, Materials and Biomolecules . Wiley; Chichester: 2008
- 3 Gagne RR, Koval CA, Lisensky GC. Inorg. Chem. 1980; 19: 2854
- 4 Connelly NG, Geiger WE. Chem. Rev. 1996; 96: 877
- 5 Rosenblum M. Chemistry of the Iron Group Metallocenes: Ferrocene, Ruthenocene, Osmocene. Interscience Publishers; New York: 1965
- 6 Green JC. Gas Phase Photoelectron Spectra of d- and f-Block Organometallic Compounds. In Bonding Problems. Vol. 43, 37-1. Springer; Berlin: 1981: 12
- 7 Wilkinson G, Rosenblum M, Whiting MC, Woodward RB. J. Am. Chem. Soc. 1952; 74: 2125
- 8 Smart JC, Pinsky BL. J. Am. Chem. Soc. 1980; 102: 1009
- 9 Gray HB, Hendrickson DN, Sohn YS. Inorg. Chem. 1971; 10: 1559
- 10 Steffen P, Unkelbach C, Christmann M, Hiller W, Strohmann C. Angew. Chem. Int. Ed. 2013; 52: 9836
- 11 Daeneke T, Mozer AJ, Kwon T.-H, Duffy NW, Holmes AB, Bach U, Spiccia L. Energy Environ. Sci. 2012; 5: 7090
- 12 Khobragade DA, Mahamulkar SG, Pospíšil L, Císařová I, Rulíšek L, Jahn U. Chem.–Eur. J. 2012; 18: 12267
- 13 Chávez I, Alvarez-Carena A, Molins E, Roig A, Maniukiewicz W, Arancibia A, Arancibia V, Brand H, Manríquez JM. J. Organomet. Chem. 2000; 601: 126
- 14a Bradley S, Camm KD, Liu X, McGowan PC, Mumtaz R, Oughton KA, Podesta TJ, Thornton-Pett M. Inorg. Chem. 2002; 41: 715
- 14b Furtado SJ, Gott AL, McGowan PC. Dalton Trans. 2004; 436
- 15 Astruc D. New J. Chem. 2011; 35: 764
- 16 Studer A, Curran DP. Nat. Chem. 2014; 6: 765
- 17 Kelly TR, Maity SK, Meghani P, Chandrakumar NS. Tetrahedron Lett. 1989; 30: 1357
- 18a Locke AJ, Richards CJ. Organometallics 1999; 18: 3750
- 18b Gibis K.-L, Helmchen G, Huttner G, Zsolnai L. J. Organomet. Chem. 1993; 445: 181
- 19 Khan N.-uH, Agrawal S, Kureshy RI, Abdi SH. R, Singh S, Jasra RV. J. Organomet. Chem. 2007; 692: 4361
- 20 Khan N.-uH, Agrawal S, Kureshy RI, Abdi SH. R, Singh S, Suresh E, Jasra RV. Tetrahedron Lett. 2008; 49: 640
- 21 Yadav GD, Chauhan MS, Singh S. Synthesis 2014; 46: 629
- 22 Yadav GD, Singh S. Tetrahedron Lett. 2014; 55: 3979
- 23 Narasaka K, Arai N, Okauchi T. Bull. Chem. Soc. Jpn. 1993; 66: 2995
- 24 Adams CJ, da Costa RC, Edge R, Evans DH, Hood MF. J. Org. Chem. 2010; 75: 1168
- 25 Fukuzumi S, Fujita M, Otera J, Fujita Y. J. Am. Chem. Soc. 1992; 114: 10271
- 26a Knölker H.-J. Chem. Rev. 2000; 100: 2941
- 26b Knolker HJ, Braier A, Brocher DJ, Cammerer S, Frohner W, Gonser P, Hermann H, Herzberg D, Reddy KR, Rohde G. Pure Appl. Chem. 2001; 73: 1075
- 26c Bauer I, Knölker H.-J. Synthesis of Pyrrole and Carbazole Alkaloids . In Alkaloid Synthesis . Vol. 309: 203-2. Springer; Heidelberg: 2012
- 27 Knölker H.-J, Wolpert M. Tetrahedron Lett. 1997; 38: 533
- 28 Bew SP, Cheesman MR, Sharma SV. Chem. Commun. 2008; 5731
- 29a Jahn U, Hartmann P. Chem. Commun. 1998; 209
- 29b Jahn U, Hartmann P. J. Chem. Soc., Perkin Trans. 1 2001; 2277
- 30 Jahn U, Hartmann P, Kaasalainen E. Org. Lett. 2004; 6: 257
- 31 Jahn U, Hartmann P, Dix I, Jones PG. Eur. J. Org. Chem. 2001; 3333
- 32 Jahn U. J. Org. Chem. 1998; 63: 7130
- 33 Jahn U, Müller M, Aussieker S. J. Am. Chem. Soc. 2000; 122: 5212
- 34 Jahn U, Hartmann P, Dix I, Jones PG. Eur. J. Org. Chem. 2002; 718
- 35 Dinca E, Hartmann P, Smrček J, Dix I, Jones PG, Jahn U. Eur. J. Org. Chem. 2012; 4461
- 36 Jahn U, Kafka F, Pohl R, Jones PG. Tetrahedron 2009; 65: 10917
- 37 Kafka F, Holan M, Hidasová D, Pohl R, Císařová I, Klepetářová B, Jahn U. Angew. Chem. Int. Ed. 2014; 53: 9944
- 38 Jagtap PR, Ford L, Deister E, Pohl R, Císařová I, Hodek J, Weber J, Mackman R, Bahador G, Jahn U. Chem.–Eur. J. 2014; 20: 10298
- 40a Krygowski ES, Murphy-Benenato K, Shair MD. Angew. Chem. Int. Ed. 2008; 47: 1680
- 40b Lee HG, Ahn JY, Lee AS, Shair MD. Chem.–Eur. J. 2010; 16: 13058
- 40c Lee AS, Shair MD. Org. Lett. 2013; 15: 2390
- 41 Langer T, Illich M, Helmchen G. Synlett 1996; 1137
- 42 Richter JM, Whitefield BW, Maimone TJ, Lin DW, Castroviejo MP, Baran PS. J. Am. Chem. Soc. 2007; 129: 12857
- 43 Baran PS, Richter JM, Lin DW. Angew. Chem. Int. Ed. 2005; 44: 609
- 44 Goddard J.-P, Gomez C, Brebion F, Beauviere S, Fensterbank L, Malacria M. Chem. Commun. 2007; 2929
- 45a Xu J, Caro-Diaz EJ. E, Trzoss L, Theodorakis EA. J. Am. Chem. Soc. 2012; 134: 5072
- 45b Xu J, Caro-Diaz EJ. E, Lacoske MH, Hung C.-I, Jamora C, Theodorakis EA. Chem. Sci. 2012; 3: 3378
- 46 Jing Y, Mardyukov A, Bergander K, Daniliuc CG, Studer A. Macromolecules 2014; 47: 3595
- 47 Nguyen PQ, Schäfer HJ. Org. Lett. 2001; 3: 2993
- 48 Sibi MP, Hasegawa M. J. Am. Chem. Soc. 2007; 129: 4124
- 49 Van Humbeck JF, Simonovich SP, Knowles RR, MacMillan DW. C. J. Am. Chem. Soc. 2010; 132: 10012
- 50 Tennyson AG, Lynch VM, Bielawski CW. J. Am. Chem. Soc. 2010; 132: 9420
- 51 Fujimura K, Ouchi M, Sawamoto M. ACS Macro Lett. 2012; 1: 321
- 52 Peña LA, Seidl AJ, Cohen LR, Hoggard PE. Transition Met. Chem. (Dordrecht, Neth.) 2009; 34: 135
- 53 Wang Q, Tian S, Cun J, Ning P. Desalin. Water Treat. 2013; 51: 5821
- 54 Forti L, Ghelfi F, Pagnoni UM. Tetrahedron 1997; 53: 4419
- 55 Ohtsuka Y, Yamakawa T. Tetrahedron 2011; 67: 2323
- 56 Wassmundt FW, Kiesman WF. J. Org. Chem. 1997; 62: 8304
- 57 Beckwith AL. J, Jackson RA, Longmore RW. Aust. J. Chem. 1992; 45: 857
- 58 Chernyak N, Buchwald SL. J. Am. Chem. Soc. 2012; 134: 12466
- 59 Chen Q, Zhang Z, Zhou N, Zhu J, Pan Q, Zhu X. J. Polym. Sci., Part A: Polym. Chem. 2009; 47: 3607
- 60 Gomes AC, Ferreira MJ, Bruno SM, Bion N, Ferreira P, Valente AA, Pillinger M, Rocha J, Goncalves IS. Dalton Trans. 2013; 42: 14612
- 61 Islam S, Paul S, Roy A, Mondal P. J. Inorg. Organomet. Polym. 2013; 23: 560
- 62a Kok GB, Scammells PJ. Bioorg. Med. Chem. Lett. 2010; 20: 4499
- 62b Kok GB, Scammells PJ. Synthesis 2012; 44: 2587
- 63 Yang H, Yan H, Sun P, Zhu Y, Lu L, Liu D, Rong G, Mao J. Green Chem. 2013; 15: 976
- 64 Marciasini LD, Richy N, Vaultier M, Pucheault M. Adv. Synth. Catal. 2013; 355: 1083
- 65 Wertz S, Leifert D, Studer A. Org. Lett. 2013; 15: 928
- 66 Pi C, Li Y, Cui X, Zhang H, Han Y, Wu Y. Chem. Sci. 2013; 4: 2675
- 67 Roemer M, Lentz D. Chem. Commun. 2011; 47: 7239
- 68 Foo K, Sella E, Thomé I, Eastgate MD, Baran PS. J. Am. Chem. Soc. 2014; 136: 5279
- 69 Wang J.-Y, Zhang X, Bao Y, Xu Y.-M, Cheng X.-F, Wang X.-S. Org. Biomol. Chem. 2014; 12: 5582
- 70a Wang T, Chen JW, Li ZQ, Wan PY. J. Photochem. Photobiol., A 2007; 187: 389
- 70b Catilaz-Simonin L, Fouassier JP. J. Appl. Polym. Sci. 2001; 79: 1911
- 70c Lazauskaité R, Budreckiené R, Gražulevičius JV, Abadie MJ. M. J. Prakt. Chem. 2000; 342: 569
- 70d Chen Y, Li G, Han J, Wang T. J. Photochem. Photobiol., A 2011; 222: 330
- 70e Wang T, Li BS, Zhang LX. Polym. Int. 2005; 54: 1251