Subscribe to RSS
DOI: 10.1055/s-0034-1379968
Recent Advances in Catalytic Stereocontrolled Cycloaddition with Terminal Propargylic Compounds
Publication History
Received: 26 November 2014
Accepted after revision: 11 December 2014
Publication Date:
28 January 2015 (online)
Abstract
Terminal propargylic compounds containing an alkyne unit and an alcohol or ester group in the propargylic position have a fairly acidic acetylenic hydrogen atom; this makes them versatile substrates for further chemical transformation. Some transition metals such as ruthenium or copper exhibit specific affinity for terminal propargylic compounds, generating dielectrophilic ruthenium– or copper–allenylidene complexes that show high potential for stereoselective cycloaddition with various bis-nucleophiles. In this review, we highlight this emerging field of catalytic stereoselective cycloaddition with terminal propargylic compounds. Examples of ruthenium-, copper-, palladium-, and gold-catalyzed cycloaddition are given in the article, along with mechanistic considerations.
1 Introduction
2 Ruthenium–Allenylidene Complexes in Enantioselective Cycloaddition
3 Copper–Allenylidene Complexes in Enantioselective Cycloaddition
4 Palladium–π-Propargyl Complexes in Stereoselective Cycloaddition
5 Gold–Carbenoid Complexes in Stereoselective Cycloaddition
6 Summary and Outlook
-
References
- 1a Guo L.-N, Duan X.-H, Liang Y.-M. Acc. Chem. Res. 2011; 44: 111
- 1b Jia-Jie W, Zhu Y, Zhan Z.-P. Asian J. Org. Chem. 2012; 1: 108
- 1c Alkynes in Cycloadditions . Maretina IA, Ionin BI. Wiley; Chichester: 2014
- 1d Modern Alkyne Chemistry . Trost BM, Li C.-J. Wiley-VCH; Weinheim: 2015
- 2a Detz RJ, Hiemstra H, van Maarseveen JH. Eur. J. Org. Chem. 2009; 6263
- 2b Miyake Y, Uemura S, Nishibayashi Y. ChemCatChem 2009; 1: 342
- 2c Debleds O, Gayon E, Vrancken E, Campagne J.-M. Beilstein J. Org. Chem. 2011; 7: 866
- 2d Ding C.-H, Hou X.-L. Chem. Rev. 2011; 111: 1914
- 2e Nishibayashi Y. Synthesis 2012; 44: 489
- 2f Yoshida M. Chem. Pharm. Bull. 2012; 60: 285
- 2g Bauer EB. Synthesis 2012; 44: 1131
- 3a Bruneau C, Dixneuf PH. Angew. Chem. Int. Ed. 2006; 45: 2176
- 3b Metal Vinylidenes and Allenylidenes in Catalysis: From Reactivity to Applications in Synthesis. Bruneau C, Dixneuf PH. Wiley-VCH; Weinheim: 2008
- 3c Cadierno V, Gimeno J. Chem. Rev. 2009; 109: 3512
- 4a Cadierno V, Gamasa MP, Gimeno J, González-Cueva M, Lastra E, Borge J, Garcîa-Granda S, Pérez-Carreño E. Organometallics 1996; 15: 2137
- 4b Esteruelas MA, Gómez AV, López AM, Modrego J, Oñate E. Organometallics 1997; 16: 5826
- 4c Baya M, Crochet P, Esteruelas MA, Gutiérrez-Puebla E, López AM, Modrego J, Oñate E, Vela N. Organometallics 2000; 19: 2585
- 5a Nishibayashi Y, Inada Y, Hidai M, Uemura S. J. Am. Chem. Soc. 2002; 124: 7900
- 5b Nishibayashi Y, Yoshikawa M, Inada Y, Hidai M, Uemura S. J. Org. Chem. 2004; 69: 3408
- 6 Kanao K, Miyake Y, Nishibayashi Y. Organometallics 2010; 29: 2126
- 7a Detz RJ, Delville MM. E, Hiemstra H, van Maarseveen JH. Angew. Chem. Int. Ed. 2008; 47: 3777
- 7b Hattori G, Matsuzawa H, Miyake Y, Nishibayashi Y. Angew. Chem. Int. Ed. 2008; 47: 3781
- 7c Fang P, Hou X.-L. Org. Lett. 2009; 11: 4612
- 7d Detz RJ, Abiri Z, le Griel R, Hiemstra H, van Maarseveen JH. Chem. Eur. J. 2011; 17: 5921
- 7e Hattori G, Yoshida A, Miyake Y, Nishibayashi Y. J. Org. Chem. 2009; 74: 7603
- 7f Hattori G, Sakata K, Matsuzawa H, Tanabe Y, Miyake Y, Nishibayashi Y. J. Am. Chem. Soc. 2010; 132: 10592
- 7g Yoshida A, Hattori G, Miyake Y, Nishibayashi Y. Org. Lett. 2011; 13: 2460
- 7h Zhang C, Wang Y.-H, Hu X.-H, Zheng Z, Xu J, Hu X.-P. Adv. Synth. Catal. 2012; 354: 2854
- 7i Mino T, Taguchi H, Hashimoto M, Sakamoto M. Tetrahedron: Asymmetry 2013; 24: 1520
- 7j Han F.-Z, Zhu F.-L, Wang Y.-H, Zou Y, Hu X.-H, Chen S, Hu X.-P. Org. Lett. 2014; 16: 588
- 7k Zou Y, Zhu F.-L, Duan Z.-C, Wang Y.-H, Zhang D.-Y, Cao Z, Zheng Z, Hu X.-P. Tetrahedron Lett. 2014; 55: 2033
- 7l Shibata M, Nakajima K, Nishibayashi Y. Chem. Commun. 2014; 50: 7874
- 7m Zhang D.-Y, Zhu F.-L, Wang Y.-H, Hu X.-H, Chen S, Hou C.-J, Hu X.-P. Chem. Commun. 2014; 50: 14459
- 7n Zhu F.-L, Zou Y, Zhang D.-Y, Wang Y.-H, Hu X.-H, Chen S, Xu J, Hu X.-P. Angew. Chem. Int. Ed. 2014; 53: 1410
- 7o Zhu F.-L, Wang Y.-H, Zhang D.-Y, Hu X.-H, Chen S, Hou C.-J, Xu J, Hu X.-P. Adv. Synth. Catal. 2014; 356: 3231
- 7p Zhao L, Huang G.-X, Guo B.-B, Xu L.-J, Chen J, Cao W.-G, Zhao G, Wu X.-Y. Org. Lett. 2014; 16: 5584
- 7q Zhu F, Hu X. Chin. J. Catal. 2015; 36: 86
- 8 Zhang C, Hu X.-H, Wang Y.-H, Zheng Z, Xu J, Hu X.-P. J. Am. Chem. Soc. 2012; 134: 9585
- 9 Zhu F.-L, Wang Y.-H, Zhang D.-Y, Xu J, Hu X.-P. Angew. Chem. Int. Ed. 2014; 53: 10223
- 10 Pan Y.-M, Zhao S.-Y, Ji W.-H, Zhan Z.-P. J. Comb. Chem. 2009; 11: 103
- 11 Hattori G, Miyake Y, Nishibayashi Y. ChemCatChem 2010; 2: 155
- 12a Portevin B, Tordjman C, Pastoureau P, Bonnet J, De Nanteuil G. J. Med. Chem. 2000; 43: 4582
- 12b Peterlin-Maŝiĉ L, Mlinŝek G, Šoimajer T, Trampuŝ-Bakija A, Stegnar M, Kikelj D. Bioorg. Med. Chem. Lett. 2003; 13: 789
- 13a Tsuji J, Watanabe I, Minami I, Shimizu I. J. Am. Chem. Soc. 1985; 107: 2196
- 13b Minami I, Yuhara M, Watanabe I, Tsuji J. J. Organomet. Chem. 1987; 334: 225
- 14 Labrosse J.-P, Lhoste P, Sinou D. Org. Lett. 2000; 2: 527
- 15 Damez C, Labrosse J.-P, Lhoste P, Sinou D. Tetrahedron Lett. 2003; 44: 557
- 16a Larock RC, Berrios-Peña NG, Fried CA. J. Org. Chem. 1991; 56: 2615
- 16b Larock RC, Zenner JM. J. Org. Chem. 1995; 60: 482
- 16c Larock RC, He Y, Leong WW, Han X, Refvik MD, Zenner JM. J. Org. Chem. 1998; 63: 2154
- 17 Yoshida M, Higuchi M, Shishido K. Tetrahedron Lett. 2008; 49: 1678
- 18 Yoshida M, Higuchi M, Shishido K. Tetrahedron 2010; 66: 2675
- 19 Yoshida M, Sugimura C, Shishido K. Org. Lett. 2011; 13: 3482
- 20a Sun H.-D, Huang S.-X, Han Q.-B. Nat. Prod. Rep. 2006; 23: 673
- 20b Tiefenbacher K, Mulzer J. Angew. Chem. Int. Ed. 2008; 47: 2548
- 20c Coy ED, Cuca LE, Sefkow M. J. Nat. Prod. 2009; 72: 1245
- 21 Yoshida M, Higuchi M, Shishido K. Org. Lett. 2009; 11: 4752
- 22a Mauleon P, Toste FD In Modern Gold Catalyzed Synthesis . Hashmi AS. K, Toste FD. Wiley-VCH; Weinheim: 2012: 75
- 22b Hashmi AS. K. Chem. Rev. 2007; 107: 3180
- 22c Gorin DJ, Sherry BD, Toste FD. Chem. Rev. 2008; 108: 3351
- 23 Amijs CH. M, López-Carrillo V, Echavarren AM. Org. Lett. 2007; 9: 4021
- 24a Shapiro ND, Toste FD. J. Am. Chem. Soc. 2008; 130: 9244
- 24b Gorin DJ, Dubé P, Toste FD. J. Am. Chem. Soc. 2006; 128: 14480
- 24c Zhang G, Zhang L. J. Am. Chem. Soc. 2008; 130: 12598
- 24d Li C.-W, Lin G.-Y, Liu R.-S. Chem. Eur. J. 2010; 16: 5803
- 25a Huang X, de Haro T, Nevado C. Chem. Eur. J. 2009; 15: 5904
- 25b Dudnik AS, Schwier T, Gevorgyan V. Tetrahedron 2009; 65: 1859
- 26 Johansson MJ, Gorin DJ, Staben ST, Toste FD. J. Am. Chem. Soc. 2005; 127: 18002
- 27 Uemura M, Watson ID. G, Katsukawa M, Toste FD. J. Am. Chem. Soc. 2009; 131: 3464
- 28 Shapiro ND, Shi Y, Toste FD. J. Am. Chem. Soc. 2009; 131: 11654
- 29 Garayalde D, Krüger K, Nevado C. Angew. Chem. Int. Ed. 2011; 50: 911
For reviews, see:
For reviews, see:
Selected examples, see:
For reviews, see: