Synthesis 2015; 47(09): 1210-1226
DOI: 10.1055/s-0034-1380117
short review
© Georg Thieme Verlag Stuttgart · New York

Catalytic Asymmetric Strecker Reaction: Bifunctional Chiral Tertiary Amine/Hydrogen-Bond Donor Catalysis Joins the Field

Yun-Lin Liu
a   Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663N, Zhongshan Road, Shanghai 200062, P. R. of China   Email: jzhou@chem.ecnu.edu.cn
,
Jian Zhou*
a   Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663N, Zhongshan Road, Shanghai 200062, P. R. of China   Email: jzhou@chem.ecnu.edu.cn
b   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 27 October 2014

Accepted after revision: 25 December 2014

Publication Date:
28 January 2015 (online)


Abstract

Bifunctional chiral tertiary amine/hydrogen-bond donor catalysis has recently emerged as a powerful strategy for developing catalytic asymmetric Strecker reactions for the synthesis of various types of optically active α-amino nitriles, useful as versatile building blocks for the synthesis of value-added products such as α-amino acids, 1,2-diamines, or heterocycles. This short review discusses the advantages of this strategy, summarizes recent advances, and describes the synthetic opportunities that remain open.

1 Introduction

2 Tertiary Amine/Hydrogen-Bond Donor Catalysis of Asymmetric Strecker Reactions

3 Summary and Outlook

 
  • References


    • For reviews, see:
    • 1a Wang J, Liu X, Feng X. Chem. Rev. 2011; 111: 6947
    • 1b Merino P, Marqués-López E, Tejero T, Herrera RP. Tetrahedron 2009; 65: 1219
    • 1c Connon SJ. Angew. Chem. Int. Ed. 2008; 47: 1176
    • 1d Spino C. Angew. Chem. Int. Ed. 2004; 43: 1764
    • 1e Gröger H. Chem. Rev. 2003; 103: 2795
    • 1f Yet L. Angew. Chem. Int. Ed. 2001; 40: 875
    • 1g Cativiela C, Ordóñez M. Tetrahedron: Asymmetry 2009; 20: 1
    • 1h Saravanan S, Khan N.-uH, Kureshy RI, Abdi SH. R, Bajaj HC. ACS Catal. 2013; 3: 2873
    • 1i Cai X.-H, Xie B. ARKIVOC 2014; 205

    • There are several other methods for preparing α�-amino acid derivatives. For asymmetric electrophilic amination reaction, see:
    • 1j Zhou F, Liao F.-M, Yu J.-S, Zhou J. Synthesis 2014; 46: 2983

    • For the α-functionalization of α-nitrogen-substituted nucleophiles, see:
    • 1k Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
    • 1l Han M.-Y, Jia J.-Y, Wang W. Tetrahedron Lett. 2014; 55: 784
    • 1m Randjelovic J, Simic M, Tasic G, Husinec S, Savic V. Curr. Org. Chem. 2014; 18: 1073
    • 1n Alba A.-NR, Rios R. Chem. Asian J. 2011; 6: 720
    • 1o Ji C.-B, Cao Z.-Y, Wang X, Wu D.-Y, Zhou J. Chem. Asian J. 2013; 8: 877
    • 1p Ji C.-B, Liu Y.-L, Zhao X.-L, Guo Y.-L, Wang H.-Y, Zhou J. Org. Biomol. Chem. 2012; 10: 1158
    • 1q Chen J.-M, Zou G.-F, Liao W.-W. Angew. Chem. Int. Ed. 2013; 52: 9296
    • 1r Qin T.-Y, Liao W.-W, Zhang Y.-J, Zhang SX.-A. Org. Biomol. Chem. 2013; 11: 984
    • 1s Chen J.-M, Fang Y.-Z, Wei Z.-l, Liao W.-W. Synthesis 2012; 1849

    • For the direct functionalization of alcohols, see:
    • 1t Chen L, Yin X.-P, Wang C.-H, Zhou J. Org. Biomol. Chem. 2014; 12: 6033
  • 2 For a review, see: Enders D, Shilvock JP. Chem. Soc. Rev. 2000; 29: 359

    • For reviews, see:
    • 3a Maruoka K, Ooi T. Chem. Rev. 2003; 103: 3013
    • 3b Nájera C, Sansano JM. Chem. Rev. 2007; 107: 4584
    • 3c Cativiela C, Díaz-de-Villegas MD. Tetrahedron: Asymmetry 2007; 18: 569
    • 3d Vogt H, Bräse S. Org. Biomol. Chem. 2007; 5: 406
    • 3e Smits R, Cadicamo CD, Burger K, Koksch B. Chem. Soc. Rev. 2008; 37: 1727
    • 5a Takahashi A, Kurasawa S, Ikeda D, Okami Y, Takeuchi T. J. Antibiot. 1989; 42: 1556
    • 5b Corey EJ, Li W.-DZ. Chem. Pharm. Bull. 1999; 47: 1
    • 5c Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL. Science 1995; 268: 726
    • 6a Saari WS, Halczenko W, Cochran DW, Dobrinska MR, Vincek WC, Titus DC, Gaul SL, Sweet CS. J. Med. Chem. 1984; 27: 713
    • 6b Pepin J, Guern C, Milord F, Schechter PJ. Lancet 1987; 330: 1431
    • 6c Kato N, Suzuki M, Kanai M, Shibasaki M. Tetrahedron Lett. 2004; 45: 3147
    • 6d Genix P, Guesnet J.-L, Lacroix G. Pflanzenschutz-Nachr. Bayer (Engl. Ed.) 2003; 56: 421
    • 6e Stepek WJ, Nigro MM. EP 0123830, 1984

      For reviews, see:
    • 7a Liu Y.-L, Yu J.-S, Zhou J. Asian J. Org. Chem. 2013; 2: 194
    • 7b Hu J, Zhang W, Wang F. Chem. Commun. 2009; 7465
    • 7c Xia J.-B, Ma Y, Chen C. Org. Chem. Front. 2014; 1: 468
  • 8 Jaffe IA, Altman K, Merryman P. J. Clin. Invest. 1964; 43: 1869
    • 9a Lohray BB, Bhushan V. Angew. Chem. Int. Ed. 1992; 31: 729
    • 9b Corey EJ, Bakshi RK, Shibata S. J. Am. Chem. Soc. 1987; 109: 5551

      For the bisoxazoline ligand 11, see:
    • 10a Johnson JS, Evans DA. Acc. Chem. Res. 2000; 33: 325
    • 10b Desimoni G, Faita G, Jørgensen KA. Chem. Rev. 2006; 106: 3561

      For the PyBox ligand 12, see:
    • 11a Nishiyama H, Sakaguchi H, Nakamura T, Horihata M, Kondo M, Itoh K. Organometallics 1989; 8: 846
    • 11b Pfaltz A. Acc. Chem. Res. 1993; 26: 339
  • 12 For the phosphinooxazoline ligand 13, see: Helmchen G, Pfaltz A. Acc. Chem. Res. 2000; 33: 336

    • For the P,N-1,1′-ferrocene ligand 14, see:
    • 13a You S.-L, Zhu X.-Z, Luo Y.-M, Hou X.-L, Dai L.-X. J. Am. Chem. Soc. 2001; 123: 7471
    • 13b Zheng W.-H, Zheng B.-H, Zhang Y, Hou X.-L. J. Am. Chem. Soc. 2007; 129: 7718
  • 14 For the trisoxazoline ligand 15, see: Liao S, Sun X.-L, Tang Y. Acc. Chem. Res. 2014; 47: 2260

    • For the spiro phosphine oxazoline ligand 16, see:
    • 15a Zhu S.-F, Xie J.-B, Zhang Y.-Z, Li S, Zhou Q.-L. J. Am. Chem. Soc. 2006; 128: 12886
    • 15b Li S, Zhu S.-F, Xie J.-H, Song S, Zhang C.-M, Zhou Q.-L. J. Am. Chem. Soc. 2010; 132: 1172
  • 16 For the SpinPHOX ligand 17, see: Han Z, Wang Z, Zhang X, Ding K. Angew. Chem. Int. Ed. 2009; 48: 5345
  • 17 For the amino alcohol ligand 18, see: Mukaiyama T, Soai K, Sato T, Shimizu H, Suzuki K. J. Am. Chem. Soc. 1979; 101: 1455
  • 18 For the amino alcohol ligand 19, see: Sibi MP, Chen J.-x, Cook GR. Tetrahedron Lett. 1999; 40: 3301
    • 19a Glorius F, Altenhoff G, Goddard R, Lehmann C. Chem. Commun. 2002; 2704
    • 19b Würtz S, Glorius F. Acc. Chem. Res. 2008; 41: 1523
    • 20a Liu X, Lin L, Feng X. Acc. Chem. Res. 2011; 44: 574
    • 20b Liu X, Lin L, Feng X. Org. Chem. Front. 2014; 1: 298
    • 20c Liu X, Lin L, Feng X. Chem. Commun. 2009; 6145
  • 21 For the imidazolidinone catalyst 22, see: Ouellet SG, Walji AM, MacMillan DW. C. Acc. Chem. Res. 2007; 40: 1327
  • 22 For the diarylprolinol silyl ether catalyst 23, see: Jensen KL, Dickmeiss G, Jiang H, Albrecht Ł, Jørgensen KA. Acc. Chem. Res. 45 2012; 248

    • For the chiral primary amine catalyst 24, see:
    • 23a Xu C, Zhang L, Luo S. Angew. Chem. Int. Ed. 2014; 53: 4149
    • 23b Zhu Y, Zhang L, Luo S. J. Am. Chem. Soc. 2014; 136: 14642
  • 24 Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
  • 25 Erkkilä A, Majander I, Pihko PM. Chem. Rev. 2007; 107: 5416
  • 26 Taylor MS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520

    • For reviews, see:
    • 27a Fu X, Tan C.-H. Chem. Commun. 2011; 47: 8210
    • 27b Coles MP. Chem. Commun. 2009; 3659
  • 28 For the tertiary phosphine 27, see: Xiao H, Chai Z, Zheng C.-W, Yang Y.-Q, Liu W, Zhang J.-K, Zhao G. Angew. Chem. Int. Ed. 2010; 49: 4467
  • 29 For the tertiary phosphine 28, see: Han X, Wang Y, Zhong F, Lu Y. J. Am. Chem. Soc. 2011; 133: 1726

    • For reviews, see:
    • 30a Xu L.-W. ChemCatChem 2013; 5: 2775
    • 30b Methot JL, Roush WR. Adv. Synth. Catal. 2004; 346: 1035
    • 30c Ye L.-W, Zhou J, Tang Y. Chem. Soc. Rev. 2008; 37: 1140
    • 30d Lu X, Zhang C, Xu Z. Acc. Chem. Res. 2001; 34: 535
    • 30e Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560
    • 31a Zhang Y.-R, He L, Wu X, Shao P.-L, Ye S. Org. Lett. 2008; 10: 277
    • 31b Enders D, Han J. Tetrahedron: Asymmetry 2008; 19: 1367
    • 31c Zhang Y.-R, Lv H, Zhou D, Ye S. Chem. Eur. J. 2008; 14: 8473
    • 31d Huang X.-L, He L, Shao P.-L, Ye S. Angew. Chem. Int. Ed. 2009; 48: 192
  • 32 Strecker A. Justus Liebigs Ann. Chem. 1850; 75: 27
  • 33 Iyer MS, Gigstad KM, Namdev ND, Lipton M. J. Am. Chem. Soc. 1996; 118: 4910

    • Such bifunctional catalysis was previously proposed for the cyanation of an aldehyde, see:
    • 34a Oku J.-I, Inoue S. J. Chem. Soc., Chem. Commun. 1981; 229
    • 34b Tanaka K, Mori A, Inoue S. J. Org. Chem. 1990; 55: 181
    • 35a Sigman MS, Jacobsen EN. J. Am. Chem. Soc. 1998; 120: 4901
    • 35b Sigman MS, Vachal P, Jacobsen EN. Angew. Chem. Int. Ed. 2000; 39: 1279
    • 35c Zuend SJ, Coughlin MP, Lalonde MP, Jacobsen EN. Nature 2009; 461: 968
    • 35d Su JT, Vachal P, Jacobsen EN. Adv. Synth. Catal. 2001; 343: 197
    • 35e Vachal P, Jacobsen EN. J. Am. Chem. Soc. 2002; 124: 10012
    • 36a Taylor MS, Jacobsen EN. J. Am. Chem. Soc. 2004; 126: 10558
    • 36b Brak K, Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534
  • 37 Pan SC, Zhou J, List B. Angew. Chem. Int. Ed. 2007; 46: 612
    • 38a Corey EJ, Grogan MJ. Org. Lett. 1999; 1: 157
    • 38b Huang J, Corey EJ. Org. Lett. 2004; 6: 5027
  • 39 Ooi T, Uematsu Y, Maruoka K. J. Am. Chem. Soc. 2006; 128: 2548
    • 40a Rueping M, Sugiono E, Azap C. Angew. Chem. Int. Ed. 2006; 45: 2617
    • 40b Rueping M, Sugiono E, Moreth SA. Adv. Synth. Catal. 2007; 349: 759
    • 41a Shen K, Liu X, Cai Y, Lin L, Feng X. Chem. Eur. J. 2009; 15: 6008
    • 41b Hou Z, Wang J, Liu X, Feng X. Chem. Eur. J. 2008; 14: 4484
    • 41c Huang J, Liu X, Wen Y, Qin B, Feng X. J. Org. Chem. 2007; 72: 204
    • 41d Huang X, Huang J, Wen Y, Feng X. Adv. Synth. Catal. 2006; 348: 2579
    • 41e Jiao Z, Feng X, Liu B, Chen F, Zhang G, Jiang Y. Eur. J. Org. Chem. 2003; 3818
    • 41f Liu B, Feng X, Chen F, Zhang G, Cui X, Jiang Y. Synlett 2001; 1551
  • 42 Sigman MS, Jacobsen EN. J. Am. Chem. Soc. 1998; 120: 5315
    • 43a Ishitani H, Komiyama S, Kobayashi S. Angew. Chem. Int. Ed. 1998; 37: 3186
    • 43b Ishitani H, Komiyama S, Hasegawa Y, Kobayashi S. J. Am. Chem. Soc. 2000; 122: 762
    • 44a Byrne JJ, Chavarot M, Chavant P.-Y, Vallée Y. Tetrahedron Lett. 2000; 41: 873
    • 44b Chavarot M, Byrne JJ, Chavant P.-Y, Vallée Y. Tetrahedron: Asymmetry 2001; 12: 1147
    • 45a Takamura M, Hamashima Y, Usuda H, Kanai M, Shibasaki M. Angew. Chem. Int. Ed. 2000; 39: 1650
    • 45b Masumoto S, Usuda H, Suzuki M, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2003; 125: 5634
    • 46a Wang J, Hu X, Jiang J, Gou S, Huang X, Liu X, Feng X. Angew. Chem. Int. Ed. 2007; 46: 8468
    • 46b Wang J, Wang W, Li W, Hu X, Shen K, Tan C, Liu X, Feng X. Chem. Eur. J. 2009; 15: 11642
  • 47 Abell JP, Yamamoto H. J. Am. Chem. Soc. 2009; 131: 15118
  • 48 Zhou J. Multicatalyst System in Asymmetric Catalysis. Wiley; Hoboken: 2014. Chap. 1

    • To the best of our knowledge, there are few reports on one-pot sequential catalytic asymmetric Strecker reactions; for successful examples based on aldehydes, see ref. 43b and:
    • 49a Wen Y, Xiong Y, Chang L, Huang J, Liu X, Feng X. J. Org. Chem. 2007; 72: 7715
    • 49b Pan SC, List B. Org. Lett. 2007; 9: 1149
    • 49c Wen Y, Gao B, Fu Y, Dong S, Liu X, Feng X. Chem. Eur. J. 2008; 14: 6789
    • 49d For those using achiral ketones, see: Zhang G.-W, Zheng D.-H, Nie J, Wang T, Ma J.-A. Org. Biomol. Chem. 2010; 8: 1399
    • 49e Barbero M, Cadamuro S, Dughera S, Torregrossa R. Org. Biomol. Chem. 2014; 12: 3902
  • 50 Zhou J. Multicatalyst System in Asymmetric Catalysis. Wiley; Hoboken: 2014. Chap. 3

    • For reviews on tertiary amine catalysis, see:
    • 51a Palomo C, Oiarbide M, López R. Chem. Soc. Rev. 2009; 38: 632
    • 51b Gawronski J, Wascinska N, Gajewy J. Chem. Rev. 2008; 108: 5227
    • 51c Yeboah EM. O, Yeboah SO, Singh GS. Tetrahedron 2011; 67: 1725
    • 51d Marcelli T, Hiemstra H. Synthesis 2010; 1229
    • 51e Tian S.-K, Chen Y, Hang J, Tang L, McDaid P, Deng L. Acc. Chem. Res. 2004; 37: 621
    • 51f Chen YG, McDaid P, Deng L. Chem. Rev. 2003; 103: 2965

      For reviews on hydrogen-bond donor catalysis, see:
    • 52a Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
    • 52b Yu X, Wang W. Chem. Asian. J. 2008; 3: 516
    • 52c Seayad J, List B. Org. Biomol. Chem. 2005; 3: 719
    • 52d Zhang Z, Schreiner PR. Chem. Soc. Rev. 2009; 38: 1187
    • 53a Tian S.-K, Deng L. J. Am. Chem. Soc. 2001; 123: 6195
    • 53b Tian S.-K, Hong R, Deng L. J. Am. Chem. Soc. 2003; 125: 9900
    • 53c Fuerst DE, Jacobsen EN. J. Am. Chem. Soc. 2005; 127: 8964
  • 54 Reingruber R, Baumann T, Dahmen S, Bräse S. Adv. Synth. Catal. 2009; 351: 1019
    • 55a Zhou F, Liu Y.-L, Zhou J. Adv. Synth. Catal. 2010; 352: 1381
    • 55b Liu Y.-L, Zhu F, Wang C.-H, Zhou J. Youji Huaxue 2013; 33: 1595
    • 55c Cao Z.-Y, Wang X, Tan C, Zhao X.-L, Zhou J, Ding K. J. Am. Chem. Soc. 2013; 135: 8197
    • 55d Zhou F, Tan C, Tang J, Zhang Y.-Y, Gao W.-M, Wu H.-H, Yu Y.-H, Zhou J. J. Am. Chem. Soc. 2013; 135: 10994
    • 55e Liu Y.-L, Wang B.-L, Cao J.-J, Chen L, Zhang Y.-X, Wang C, Zhou J. J. Am. Chem. Soc. 2010; 132: 15176
    • 55f Ding M, Zhou F, Liu Y.-L, Wang C.-H, Zhao X.-L, Zhou J. Chem. Sci. 2011; 2: 2035
    • 55g Cao Z.-Y, Zhou F, Yu Y.-H, Zhou J. Org. Lett. 2013; 15: 42
    • 55h Cao Z.-Y, Zhang Y, Ji C.-B, Zhou J. Org. Lett. 2011; 13: 6398
    • 55i Qian Z.-Q, Zhou F, Du T.-P, Wang B.-L, Ding M, Zhao X.-L, Zhou J. Chem. Commun. 2009; 6753
    • 55j Liu Y.-L, Zhou J. Chem. Commun. 2013; 49: 4421
    • 55k Zhou F, Zeng X.-P, Wang C, Zhao X.-L, Zhou J. Chem. Commun. 2013; 49: 2022
    • 55l Gao W.-M, Yu J.-S, Zhao Y.-L, Liu Y.-L, Zhou F, Wu H.-H, Zhou J. Chem. Commun. 2014; 50: 15179
    • 55m Zhou F, Ding M, Liu Y.-L, Wang C.-H, Ji C.-B, Zhang Y.-Y, Zhou J. Adv. Synth. Catal. 2011; 353: 2945
    • 55n Zhu F, Zhou F, Cao Z.-Y, Wang C, Zhang Y.-X, Wang C.-H, Zhou J. Synthesis 2012; 44: 3129
    • 55o Zhou F, Cao Z.-Y, Zhang J, Yang H.-B, Zhou J. Chem. Asian J. 2012; 7: 233
    • 55p Ding M, Zhou F, Qian Z.-Q, Zhou J. Org. Biomol. Chem. 2010; 8: 2912
    • 55q Chen L, Zhu F, Wang H.-C, Zhou J. RSC Adv. 2013; 3: 19880
    • 55r Yu J.-S, Zhou F, Liu Y.-L, Zhou J. Beilstein J. Org. Chem. 2012; 8: 1360
    • 55s Wang Y.-H, Cao Z.-Y, Niu Y.-F, Zhao X.-L, Zhou J. Huaxue Xuebao 2014; 72: 867
  • 56 Liu Y.-L, Zhou F, Cao J.-J, Ji C.-B, Ding M, Zhou J. Org. Biomol. Chem. 2010; 8: 3847

    • For reviews on bifunctional tertiary amine/(thio)urea catalysis, see:
    • 57a Takemoto Y. Org. Biomol. Chem. 2005; 3: 4299
    • 57b Connon SJ. Chem. Commun. 2008; 2499

    • For pioneering work on cinchona alkaloid thiourea catalysts, see:
    • 57c Li B.-J, Jiang L, Liu M, Chen Y.-C, Ding L.-S, Wu Y. Synlett 2005; 603
    • 57d Vakulya B, Varga S, Csámpai A, Soós T. Org. Lett. 2005; 7: 1967
    • 57e McCooey SH, Connon SJ. Angew. Chem. Int. Ed. 2005; 44: 6367
    • 57f Ye J, Dixon DJ, Hynes PS. Chem. Commun. 2005; 4481
  • 58 Enders D, Gottfried K, Raabe G. Adv. Synth. Catal. 2010; 352: 3147
    • 59a Liu Y.-L, Wang X, Zhao Y.-L, Zhu F, Zeng X.-P, Chen L, Wang C.-H, Zhao X.-L, Zhou J. Angew. Chem. Int. Ed. 2013; 52: 13735
    • 59b Liu Y.-L, Zhou J. Chem. Commun. 2012; 48: 1919
    • 59c Liu Y.-L, Liao F.-M, Niu Y.-F, Zhao X.-L, Zhou J. Org. Chem. Front. 2014; 1: 742
    • 59d Liu Y.-L, Zhou J. Huaxue Xuebao 2012; 70: 1451
    • 59e Yu J.-S, Liu Y.-L, Tang J, Wang X, Zhou J. Angew. Chem. Int. Ed. 2014; 53: 9512
    • 59f Yin X.-P, Zeng X.-P, Liu Y.-L, Liao F.-M, Yu J.-S, Zhou F, Zhou J. Angew. Chem. Int. Ed. 2014; 53: 13740
  • 60 Liu Y.-L, Shi T.-D, Zhou F, Zhao X.-L, Wang X, Zhou J. Org. Lett. 2011; 13: 3826

    • For reviews, see:
    • 61a Cahard D, Bizet V. Chem. Soc. Rev. 2014; 43: 135
    • 61b Shimoni L, Glusker JP. Struct. Chem. 1994; 5: 383
    • 61c Howard JA. K, Hoy VJ, O’Hagan D, Smith GT. Tetrahedron 1996; 52: 12613
    • 61d Dunitz JD, Taylor R. Chem. Eur. J. 1997; 3: 89
    • 61e Schneider H.-J. Chem. Sci. 2011; 3: 1381

    • For examples of C–F/H–X interactions, see:
    • 61f Zhao X, Wang X.-Z, Jiang X.-K, Chen Y.-Q, Li Z.-T, Chen G.-J. J. Am. Chem. Soc. 2003; 125: 15128
    • 61g Liu Y.-H, Zhang L, Xu X.-N, Li Z.-M, Zhang D.-W, Zhao X, Li Z.-T. Org. Chem. Front. 2014; 1: 494
  • 62 Liu Y.-L, Zeng X.-P, Zhou J. Chem. Asian J. 2012; 7: 1759
  • 63 Shao Y.-D, Tian S.-K. Chem. Commun. 2012; 48: 4899
  • 64 Vicario J, Ezpeleta JM, Palacios F. Adv. Synth. Catal. 2012; 354: 2641
  • 65 Liu Y.-L, Zhou J. Chem. Commun. 2013; 49: 4421
    • 66a Yan W, Wang D, Feng J, Li P, Zhao D, Wang R. Org. Lett. 2012; 14: 2512
    • 66b Feng J, Yan W, Wang D, Li P, Sun Q, Wang R. Chem. Commun. 2012; 48: 8003
    • 67a Cao J.-J, Zhou F, Zhou J. Angew. Chem. Int. Ed. 2010; 49: 4976
    • 67b Chen L, Shi T.-D, Zhou J. Chem. Asian J. 2013; 8: 556
  • 68 Wang D, Liang J, Feng J, Wang K, Sun Q, Zhao L, Li D, Yan W, Wang R. Adv. Synth. Catal. 2013; 355: 548
  • 69 Zhang F.-G, Zhu X.-Y, Li S, Nie J, Ma J.-A. Chem. Commun. 2012; 48: 11552
  • 70 Xie H, Song A, Song X, Zhang X, Wang W. Tetrahedron Lett. 2013; 54: 1409
  • 71 He H.-X, Du D.-M. Eur. J. Org. Chem. 2014; 6190
  • 72 Li N.-K, Liu Z.-M, Huang X.-F, Zhang J.-X, Chen X, Wang Y, Wang X.-W. RSC Adv. 2013; 3: 9154
  • 73 Yamamoto H, Futatsugi K. Angew. Chem. Int. Ed. 2005; 44: 1924