Synthesis 2015; 47(14): 2063-2072
DOI: 10.1055/s-0034-1380203
paper
© Georg Thieme Verlag Stuttgart · New York

Highly Enantioselective Michael Addition of Nitroalkanes to Enones and Its Application in Syntheses of (R)-Baclofen and (R)-Phenibut

Xing-Tao Guo
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, P. R. of China, Fax: +86(21)64252011   Email: xinyanwu@ecust.edu.cn
,
Jie Shen
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, P. R. of China, Fax: +86(21)64252011   Email: xinyanwu@ecust.edu.cn
,
Feng Sha*
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, P. R. of China, Fax: +86(21)64252011   Email: xinyanwu@ecust.edu.cn
,
Xin-Yan Wu*
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, P. R. of China, Fax: +86(21)64252011   Email: xinyanwu@ecust.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 23 January 2015

Accepted after revision: 22 March 2015

Publication Date:
19 May 2015 (online)


Abstract

A highly enantioselective Michael addition of nitroalkanes to α,β-unsaturated ketones was developed. In the presence of a chiral primary amine–thiourea catalyst based on dehydroabietic amine, γ-nitro ketones were obtained with excellent enantioselectivities (up to 99% ee) and in up to 96% yield. This protocol was successfully applied in asymmetric syntheses of (R)-baclofen and (R)-phenibut with high yields and excellent enantioselectivities.

Supporting Information

 
  • References and Notes


    • For selected examples, see:
    • 1a Hanessian S, Roy PJ, Petrini M, Hodges PJ, Di Fabio R, Carganico G. J. Org. Chem. 1990; 55: 5766
    • 1b Vavrecka M, Janowitz A, Hesse M. Tetrahedron Lett. 1991; 32: 5543
    • 1c Node M, Hao X.-j, Fuji K. Chem. Lett. 1991; 57
    • 1d Francke W, Schröder F, Walter F, Sinnwell V, Baumann H, Kaib M. Liebigs Ann. 1995; 965
    • 1e Barco A, Benetti S, De Risi C, Pollini GP, Zanirato V. Tetrahedron 1995; 51: 7721
    • 1f Ballini R, Bosica G, Rafaiani G. Helv. Chim. Acta 1995; 78: 879
    • 1g Sacher JR, Weinreb SM. Org. Lett. 2012; 14: 2172
    • 1h Luo S.-P, Guo L.-D, Gao L.-H, Li S, Huang P.-Q. Chem. Eur. J. 2013; 19: 87
    • 1i Sun Z, Zhou M, Li X, Meng X, Peng F, Zhang H, Shao Z. Chem. Eur. J. 2014; 20: 6112

      For selected reviews, see:
    • 2a Perlmutter P. Conjugate Addition Reactions in Organic Synthesis. Pergamon; Oxford: 1992
    • 2b Ballini R, Bosica G, Fiorini D, Palmieri A, Petrini M. Chem. Rev. 2005; 105: 933
    • 2c Ballini R, Barboni L, Bosica G, Fiorini D, Palmieri A. Pure Appl. Chem. 2006; 78: 1857
    • 2d Marqués-López E, Merino P, Tejero T, Herrera RP. Eur. J. Org. Chem. 2009; 2401
    • 2e Córdova A. Catalytic Asymmetric Conjugate Reactions . Wiley-VCH; Weinheim: 2010
    • 2f Roca-Lopez D, Sadaba D, Delso I, Herrera RP, Tejero T, Merino P. Tetrahedron: Asymmetry 2010; 21: 2561
    • 2g Zhang Y, Wang W. Catal. Sci. Technol. 2012; 2: 42
    • 2h Serdyuk OV, Heckel CM, Tsogoeva SB. Org. Biomol. Chem. 2013; 11: 7051
    • 2i Tsakos M, Kokotos CG. Tetrahedron 2013; 69: 10199

      For examples of organocatalytic enantioselective Michael additions of nitroalkanes to chalcones, see:
    • 3a Colonna S, Hiemstra H, Weynberg H. J. Chem. Soc., Chem. Commun. 1978; 238
    • 3b Matsumoto K, Uchida T. Chem. Lett. 1981; 1673
    • 3c Sera A, Takagi K, Katayama H, Yamada H. J. Org. Chem. 1988; 53: 1157
    • 3d Kim D, Huh S. Tetrahedron 2001; 57: 8933
    • 3e Bakó T, Bakó P, Szöllõsy A, Czugler M, Keglevicha G, Tõke L. Tetrahedron: Asymmetry 2002; 13: 203
    • 3f Bakó T, Bakó P, Keglevicha G, Báthori N, Czugler M, Tatai J, Novák T, Parlagh G, Tõke L. Tetrahedron: Asymmetry 2003; 14: 1917
    • 3g Bakó P, Makó A, Keglevich G, Kubinyib M, Pál K. Tetrahedron: Asymmetry 2005; 16: 1861
    • 3h Suresh P, Pitchumani K. Tetrahedron: Asymmetry 2008; 19: 2037
    • 3i Vakulya B, Varga S, Csámpai A, Soós T. Org. Lett. 2005; 7: 1967
    • 3j Makó A, Szöllõsy A, Keglevicha G, Menyhárd D, Bakó P, Tõke L. Monatsh. Chem. 2008; 139: 525
    • 3k Vakulya B, Varga S, Soós T. J. Org. Chem. 2008; 73: 3475
    • 3l Yang W, Du D.-M. Org. Lett. 2010; 12: 5450
    • 3m Hua M.-Q, Cui H.-F, Wang L, Nie J, Ma J.-A. Angew. Chem. Int. Ed. 2010; 49: 2772
    • 3n Makó A, Rapi Z, Drahos L, Szöllõsy Á, Keglevich G, Bakó P. Lett. Org. Chem. 2010; 7: 424
    • 3o Manzano R, Andrés JM, Álvarez R, Muruzábal MD, de Lera ÁR, Pedrosa R. Chem. Eur. J. 2011; 17: 5931
    • 3p Kawai H, Yuan Z, Kitayama T, Tokunaga E, Shibata N. Angew. Chem. Int. Ed. 2013; 52: 5575
    • 3q Gautam LN, Su Y, Akhmedov NG, Petersen JL, Shi X. Org. Biomol. Chem. 2014; 12: 6384

      For examples of the organocatalytic enantioselective Michael additions of nitroalkanes to cyclic enones, see:
    • 4a Yamaguchi M, Shiraishi T, Igarashi Y. Tetrahedron Lett. 1994; 35: 8233
    • 4b Yamaguchi M, Igarashi Y, Reddy RS, Shiraishi T, Hirama M. Tetrahedron 1997; 53: 11223
    • 4c Hanessian S, Pham V. Org. Lett. 2000; 2: 2975
    • 4d Tsogoeva SB, Jagtap SB, Ardemasova ZA, Kalikhevich VN. Eur. J. Org. Chem. 2004; 4014
    • 4e Tsogoeva SB, Jagtap SB. Synlett 2004; 2624
    • 4f Mitchell CE. T, Brenner SE, Ley SV. Chem. Commun. 2005; 5346
    • 4g Ooi T, Takada S, Fujioka S, Maruoka K. Org. Lett. 2005; 7: 5143
    • 4h Hanessian S, Govindan S, Warrier JS. Chirality 2005; 17: 540
    • 4i Hanessian S, Shao ZH, Warrier JS. Org. Lett. 2006; 8: 4787
    • 4j Mitchell CE. T, Brenner SE, García-Fortanet J, Ley SV. Org. Biomol. Chem. 2006; 4: 2039
    • 4k Tsogoeva SB, Jagtapa SB, Ardemasova ZA. Tetrahedron: Asymmetry 2006; 17: 989
    • 4l Malmgren M, Granander J, Amedjkouh M. Tetrahedron: Asymmetry 2008; 19: 1934
    • 4m Li P, Wang Y, Liang X, Ye J. Chem. Commun. 2008; 3302
    • 4n Kwiatkowski P, Dudziński K, Łyźwa D. Org. Lett. 2011; 13: 3624
    • 4o Yoshida M, Hirama K, Narita M, Hara S. Symmetry 2011; 3: 155
    • 4p Pandey G, Adatea PA, Puranik VG. Org. Biomol. Chem. 2012; 10: 8260
    • 4q Wu W, Li X, Huang H, Yuan X, Lu J, Zhu K, Ye J. Angew. Chem. Int. Ed. 2013; 52: 1743

      For examples of the organocatalytic enantioselective Michael additions of nitroalkanes to alkyl cinnamyl ketones, see:
    • 5a Halland N, Hazell RG, Jørgensen KA. J. Org. Chem. 2002; 67: 8331
    • 5b Prieto A, Halland N, Jørgensen KA. Org. Lett. 2005; 7: 3897
    • 5c Szánto G, Bombicz P, Grün A, Kádas I. Chirality 2008; 20: 1120
    • 5d Mei K, Jin M, Zhang SL, Li P, Liu W, Chen X, Xue F, Duan W, Wang W. Org. Lett. 2009; 11: 2864
    • 5e Yang Y.-Q, Chen X.-K, Xiao H, Liu W, Zhao G. Chem. Commun. 2010; 4130
    • 5f Zhou Y, Liu Q, Gong Y. Org. Biomol. Chem. 2012; 10: 7618
    • 5g Jensen KL, Weise CF, Dickmeiss G, Morana F, Davis RL, Jørgensen KA. Chem. Eur. J. 2012; 18: 11913
    • 5h Liu W, Mei D, Wang W, Duan W. Tetrahedron Lett. 2013; 54: 3791

      For application of chiral primary amine–thiourea compounds based on dehydroabietic amine, see:
    • 6a Jiang X, Zhang Y, Chan AS. C, Wang R. Org. Lett. 2009; 11: 153
    • 6b Jiang X, Shi X, Wang S, Sun T, Cao Y, Wang R. Angew. Chem. Int. Ed. 2012; 51: 2084

      For applications of cyclohexanediamine-derived chiral tertiary amine–thiourea compounds based on dehydroabietic amine, see:
    • 7a Jiang X, Zhang Y, Liu X, Zhang G, Lai L, Wu L, Zhang J, Wang R. J. Org. Chem. 2009; 74: 5562
    • 7b Jiang X, Zhang Y, Wu L, Zhang G, Liu X, Zhang H, Fu D, Wang R. Adv. Synth. Catal. 2009; 351: 2096
    • 7c Jiang X, Zhang G, Fu D, Cao Y, Shen F, Wang R. Org. Lett. 2010; 12: 1544
    • 7d Jiang X, Fu D, Zhang G, Cao Y, Liu L, Song J, Wang R. Chem. Commun. 2010; 4294
    • 7e Jiang X, Cao Y, Wang Y, Liu L, Shen F, Wang R. J. Am. Chem. Soc. 2010; 132: 15328
    • 7f Cao Y, Jiang X, Liu L, Shen F, Zhang F, Wang R. Angew. Chem. Int. Ed. 2011; 50: 9124
    • 7g Jiang X, Wu L, Xing Y, Wang L, Wang S, Chen Z, Wang R. Chem. Commun. 2012; 446
    • 7h Jiang X, Wang L, Kai M, Zhu L, Yao X, Wang R. Chem. Eur. J. 2012; 18: 11465
    • 7i Liu L, Zhong Y, Zhang P, Jiang X, Wang R. J. Org. Chem. 2012; 77: 10228
    • 7j Shi X.-M, Dong W.-P, Zhu L.-P, Jiang X.-X, Wang R. Adv. Synth. Catal. 2013; 355: 3119
    • 7k Jiang X, Liu L, Zhang P, Zhong Y, Wang R. Angew. Chem. Int. Ed. 2013; 52: 11329
    • 7l Zhu H, Jiang X, Li X, Hou C, Jiang Y, Hou K, Wang R, Li Y. ChemCatChem 2013; 5: 2187
    • 7m Chen Q, Liang J, Wang S, Wang D, Wang R. Chem. Commun. 2013; 1657
    • 7n Wang L, Shi X.-M, Dong W.-P, Zhu L.-P, Wang R. Chem. Commun. 2013; 3458
    • 7o Liu L, Zhang D, Zhang P, Jiang X, Wang R. Org. Biomol. Chem. 2013; 11: 5222
    • 7p Zhang H.-R, Xue J.-J, Chen R, Tang Y, Li Y. Chin. Chem. Lett. 2014; 25: 710

      For applications of cinchona alkaloid-derived chiral tertiary amine–thiourea compounds based on dehydroabietic amine, see:
    • 8a Jiang X, Wang Y, Zhang G, Fu D, Zhang Y, Kai M, Wang R. Adv. Synth. Catal. 2011; 353: 1787
    • 8b Zhang G, Zhang Y, Jiang X, Yan W, Wang R. Org. Lett. 2011; 13: 3806
    • 8c Jiang X, Sun Y, Yao J, Cao Y, Kai M, He N, Zhang X, Wang Y, Wang R. Adv. Synth. Catal. 2012; 354: 917
    • 8d Liu X, Song H, Chen Q, Li W, Yin W, Kai M, Wang R. Eur. J. Org. Chem. 2012; 6647
    • 8e Zhang G, Zhang Y, Yan J, Chen R, Wang S, Ma Y, Wang R. J. Org. Chem. 2012; 77: 878
    • 8f Jiang X, Zhu H, Shi X, Zhong Y, Li Y, Wang R. Adv. Synth. Catal. 2013; 355: 308
    • 8g Cao Y.-M, Shen F.-F, Zhang F.-T, Wang R. Chem. Eur. J. 2013; 19: 1184
  • 9 For applications of chiral indane amine–thiourea compounds based on dehydroabietic amine, see: Subba Reddy BV, Swain M, Madhusudana Reddy S, Yadav JS. RSC Adv. 2013; 3: 8756

    • For selected examples of analogous Michael reactions of enones and C-nucleophiles, e.g. malonates, catalyzed by the same type of catalyst based on primary amine–thiourea compounds derived from cyclohexane-1,2-diamine, see:
    • 10a Li P, Wen S, Yu F, Liu Q, Li W, Wang Y, Liang X, Ye J. Org. Lett. 2009; 11: 753
    • 10b Dudziński K, Pakulska AM, Kwiatkowski P. Org. Lett. 2012; 14: 4222
    • 10c Moritaka M, Miyamae N, Nakano K, Ichikawa Y, Kotsuki H. Synlett 2012; 2554

      For selected examples of the synthesis of compound 4aa through the organocatalyzed Michael addition of acetone to p-chloronitrostyrene with high yield and excellent enantioselectivities, see:
    • 11a Madal T, Zhao C.-G. Angew. Chem. Int. Ed. 2008; 47: 7714
    • 11b Gu Q, Guo X.-T, Wu X.-Y. Tetrahedron 2009; 65: 5265
    • 11c Morris DJ, Partridge SA, Manville CV, Racys DT, Woodward G, Docherty G, Wills M. Tetrahedron Lett. 2010; 51: 209
    • 11d Peng L, Xu X.-Y, Wang L.-L, Huang J, Bai J.-F, Huang Q.-C, Wang L.-X. Eur. J. Org. Chem. 2010; 1849
    • 11e Lu A, Liu T, Wu R, Wang Y, Zhou Z, Wu G, Fang J, Tang C. Eur. J. Org. Chem. 2010; 5777
    • 11f Lu A, Liu T, Wu R, Wang Y, Wu G, Zhou Z, Fang J, Tang C. J. Org. Chem. 2011; 76: 3872
    • 11g Sun Z.-W, Peng F.-Z, Li Z.-Q, Zou L.-W, Zhang S.-X, Li X, Shao Z.-H. J. Org. Chem. 2012; 77: 4103
    • 11h Li H, Zhang X, Shi X, Ji N, He W, Zhang S, Zhang B. Adv. Synth. Catal. 2012; 354: 2264
    • 11i Singh KN, Singh P, Kaur A, Singh P, Sharma SK, Khullar S, Mandal SK. Synthesis 2013; 45: 1406
  • 12 Liu S.-P, Zhang X.-J, Lao J.-H, Yan M. ARKIVOC 2009; (7): 268
  • 13 With catalyst 1a; 4aa: 43% yield, 97% ee; 4ag: 43% yield, 97% ee; 4ap: 18% yield, 80% ee; 4aq: 51% yield, 95% ee. With catalyst 1g; 4aa: 40% yield, 97% ee; 4ag: 41% yield, 97% ee; 4ap: 18% yield, 79% ee; 4aq: 38% yield, 96% ee.

    • For the comparative pharmacological activities of the two enantiomers of baclofen, see:
    • 14a Olpe H.-R, Demiéville H, Baltzer V, Bencze WL, Koella WP, Wolf P, Haas HL. Eur. J. Pharmacol. 1978; 52: 133
    • 14b Paredes R, Agmo A. Psychopharmacology (Heidelberg, Ger.) 1989; 97: 358
    • 14c Fromm GH, Shibuya T, Nakata M, Terrence CF. Neuropharmacology 1990; 29: 249

      For the comparative pharmacological activities of the two enantiomers of phenibut, see:
    • 15a Khaunina RA. Byull. Eksp. Biol. Med. 1971; 72: 49
    • 15b Allan RD, Bates MC, Drew CA, Duke RK, Hambley TW, Johnston GA. R, Mewett KN, Spence I. Tetrahedron 1990; 46: 2511
    • 15c Dambrova M, Zvejniece L, Liepinsh E, Cirule H, Zharkova O, Veinberg G, Kalvinsh I. Eur. J. Pharmacol. 2008; 583: 128

      For selected examples of asymmetric syntheses of (R)-baclofen and (R)-phenibut using chiral organocatalysts, see:
    • 16a Corey EJ, Zhang F.-Y. Org. Lett. 2000; 2: 4257
    • 16b Okino T, Hoashi Y, Furukawa T, Xu X, Takemoto Y. J. Am. Chem. Soc. 2005; 127: 119
    • 16c Zu L, Xie H, Li H, Wang J, Wang W. Adv. Synth. Catal. 2007; 349: 2660
    • 16d Wang Y, Li P, Liang X, Zhang TY, Ye J. Chem. Commun. 2008; 1232
    • 16e Baschieri A, Bernardi L, Ricci A, Suresh S, Adamo MF. A. Angew. Chem. Int. Ed. 2009; 48: 9342
    • 16f Maltsev OV, Kucherenko AS, Beletskaya IP, Tartakovsky VA, Zlotin SG. Eur. J. Org. Chem. 2010; 2927
    • 16g Li F, Li Y.-Z, Jia Z.-S, Xu M.-H, Tian P, Lin G.-Q. Tetrahedron 2011; 67: 10186
    • 16h Tsakos M, Kokotos CG, Kokotos G. Adv. Synth. Catal. 2012; 354: 740
    • 16i Vellalath S, Van KN, Romo D. Angew. Chem. Int. Ed. 2013; 52: 13688
    • 16j Feu KS, de la Torre AF, Silva S, de Moraes MA. Jr, Corrêa FA. G, Paixão MW. Green Chem. 2014; 16: 3169
    • 16k Leyva-Pérez A, García-García P, Corma A. Angew. Chem. Int. Ed. 2014; 53: 8687

      For selected examples of asymmetric syntheses of (R)-baclofen and (R)-phenibut using chiral organometallic catalysts, see:
    • 17a Anada M, Hashimoto S. Tetrahedron Lett. 1998; 39: 79
    • 17b Resende P, Almeida WP, Coelho F. Tetrahedron: Asymmetry 1999; 10: 2113
    • 17c Licandro E, Maiorana S, Baldoli C, Capella L, Perdicchia D. Tetrahedron: Asymmetry 2000; 11: 975
    • 17d Baldoli C, Maiorana S, Licandro E, Perdicchia D, Vandoni B. Tetrahedron: Asymmetry 2000; 11: 2007
    • 17e Doyle MP, Hu W. Chirality 2002; 14: 169
    • 17f Thakur VV, Nikalje MD, Sudalai A. Tetrahedron: Asymmetry 2003; 14: 581
    • 17g Palomo C, Pazos R, Oiarbide M, García JM. Adv. Synth. Catal. 2006; 348: 1161
    • 17h Paraskar AS, Sudalai A. Tetrahedron 2006; 62: 4907
    • 17i Nemoto T, Jin L, Nakamura H, Hamada Y. Tetrahedron Lett. 2006; 47: 6577
    • 17j Deng J, Duan Z.-C, Huang J.-D, Hu X.-P, Wang D.-Y, Yu S.-B, Xu X.-F, Zheng Z. Org. Lett. 2007; 9: 4825
    • 17k Fujimori I, Mita T, Maki K, Shiro M, Sato A, Furusho S, Kanaia M, Shibasaki M. Tetrahedron 2007; 63: 5820
    • 17l Deng J, Hu X.-P, Huang J.-D, Yu S.-B, Wang D.-Y, Duan Z.-C, Zheng Z. J. Org. Chem. 2008; 73: 6022
    • 17m Wang J, Li W, Liu Y, Chu Y, Lin L, Liu X, Feng X. Org. Lett. 2010; 12: 1280
    • 17n Shao C, Yu H.-J, Wu N.-Y, Tian P, Wang R, Feng C.-G, Lin G.-Q. Org. Lett. 2011; 13: 788
    • 17o Yang X.-F, Ding C.-H, Li X.-H, Huang J.-Q, Hou X.-L, Dai L.-X, Wang P.-J. J. Org. Chem. 2012; 77: 8980
    • 17p Ogawa T, Mouri S, Yazaki R, Kumagai N, Shibasaki M. Org. Lett. 2012; 14: 110
    • 18a Drake NL, Allen PJr. Org. Synth. Coll. Vol. I . Wiley; London: 1941: 77
    • 18b Kohler EP, Chadwell HM. Org. Synth. Coll. Vol. I . Wiley; London: 1941: 78
  • 19 Veinberg G, Vorona M, Lebedevs A, Chernobrovijs A, Kalvinsh I. WO 2007096314, 2007
  • 20 Leisen C, Langguth P, Herbert B, Dressler C, Koggel A, Spahn-Langguth H. Pharm. Res. 2003; 20: 772