Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(07): 975-979
DOI: 10.1055/s-0034-1380320
DOI: 10.1055/s-0034-1380320
letter
Synthesis of Symmetrical Biaryls through Palladium-Catalyzed Ligand-Free Homocoupling of Aryliodine(III) Diacetates
Further Information
Publication History
Received: 16 December 2014
Accepted after revision: 19 January 2015
Publication Date:
19 February 2015 (online)
Abstract
An efficient process for the synthesis of symmetrical biaryls from readily available and bench-stable aryliodine(III) diacetates has been developed with high regional selectivity. The process exhibited high selectivities and good functional group tolerance with respect to methyl, bromo, chloro and cyano groups. Mechanistic studies revealed that the transformation involved in situ generation of aryl iodide from heating-promoted degradation of aryliodine(III) diacetate, followed by Ullmann-type homocoupling.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1380320.
- Supporting Information
-
References and Notes
- 1a Poetsch E. Kontakte (Darmstadt) 1988; 2: 15
- 1b Meier H. Angew. Chem. Int. Ed. 2005; 44: 2482
- 1c Degnan AP, Meyers AI. J. Am. Chem. Soc. 1999; 121: 2762
- 1d Vrettou M, Gray AA, Brewer AR. E, Barrett AG. M. Tetrahedron 2007; 63: 1487
- 1e Markham A, Goa KL. Drugs 1997; 54: 299
- 1f Croom KF, Keating GM. Am. J. Cardiovasc. Drugs 2004; 4: 395
- 2a Surry DS, Buchwald SL. Chem. Sci. 2011; 2: 27
- 2b Brunel JM. Chem. Rev. 2005; 105: 857
- 2c Lemieux RP. Acc. Chem. Res. 2001; 34: 845
- 3a Fu GC. Acc. Chem. Res. 2008; 41: 1555
- 3b Lei A, Liu W, Liu C, Chen M. Dalton Trans. 2010; 39: 10352
- 3c Valente C, Çalimsiz S, Hoi KH, Mallik D, Sayah M, Organ MG. Angew. Chem. Int. Ed. 2012; 51: 3314
- 3d Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
- 3e Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
- 4a Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780
- 4b Shi W, Liu C, Lei A. Chem. Soc. Rev. 2011; 40: 2761
- 4c Liu D, Liu C, Li H, Lei A. Angew. Chem. Int. Ed. 2013; 52: 4453
- 4d He C, Guo S, Ke J, Hao J, Xu H, Chen H, Lei A. J. Am. Chem. Soc. 2012; 134: 5766
- 4e He C, Hao J, Xu H, Mo Y, Liu H, Han J, Lei A. Chem. Commun. 2012; 48: 11073
- 4f Liu C, Wang J, Meng L, Deng Y, Li Y, Lei A. Angew. Chem. Int. Ed. 2011; 50: 5144
- 4g Chen M, Zheng X, Li W, He J, Lei A. J. Am. Chem. Soc. 2010; 132: 4101
- 4h Liu Q, Li G, He J, Liu J, Li P, Lei A. Angew. Chem. Int. Ed. 2010; 49: 3371
- 4i Zhao Y, Wang H, Hou X, Hu Y, Lei A, Zhang H, Zhu L. J. Am. Chem. Soc. 2006; 128: 15048
- 5a Kirai N, Yamamoto Y. Eur. J. Org. Chem. 2009; 1864
- 5b Cheng G, Luo M. Eur. J. Org. Chem. 2011; 2519
- 5c Carrettin S, Guzman J, Corma A. Angew. Chem. Int. Ed. 2005; 44: 2242
- 5d Puthiaraj P, Suresh P, Pitchumani K. Green Chem. 2014; 16: 2865
- 5e Li J, Jin L, Liu C, Lei A. Chem. Commun. 2013; 49: 9615
- 5f Nagano T, Hayashi T. Org. Lett. 2005; 7: 491
- 5g Kiefer G, Jeanbourquin L, Severin K. Angew. Chem. Int. Ed. 2013; 52: 6302
- 6a Rong Y, Li R, Lu W. Organometallics 2007; 26: 4376
- 6b Kar A, Mangu N, Kaiser HM, Beller M, Tse MK. Chem. Commun. 2008; 386
- 7a Hu P, Shang Y, Su W. Angew. Chem. Int. Ed. 2012; 51: 5945
- 7b Cornella J, Lahlali H, Larrosa I. Chem. Commun. 2010; 46: 8276
- 7c Xie K, Wang S, Yang Z, Liu J, Wang A, Li X, Tan Z, Guo C.-C, Deng W. Eur. J. Org. Chem. 2011; 5787
- 7d Rao B, Zhang W, Hu L, Luo M. Green Chem. 2012; 14: 3436
- 7e Ortgies DH, Chen F, Forgione P. Eur. J. Org. Chem. 2014; 3917
- 7f Liu J.-B, Nie L, Yan H, Jiang L.-H, Weng J, Lu G. Org. Biomol. Chem. 2013; 11: 8014
- 8a Hossain MD, Kitamura T. Tetrahedron Lett. 2006; 47: 7889
- 8b Hossain MD, Kitamura T. Bull. Chem. Soc. Jpn. 2007; 80: 2213
- 9a Richardson RD, Wirth T. Angew. Chem. Int. Ed. 2006; 45: 4402
- 9b Check CT, Henderson WH, Wray BC, Vanden Eynden MJ, Stambuli JP. J. Am. Chem. Soc. 2011; 133: 18503
- 9c Liu Q, Zhao QY, Liu J, Wu P, Yi H, Lei A. Chem. Commun. 2012; 48: 3239
- 9d Nadres ET, Daugulis O. J. Am. Chem. Soc. 2012; 134: 7
- 9e Liu Q, Li G, Yi H, Wu P, Liu J, Lei A. Chem. Eur. J. 2011; 17: 2353
- 10a Stang PJ, Zhdankin VV. Chem. Rev. 1996; 96: 1123
- 10b de Armas P, Francisco CG, Suarez E. Angew. Chem., Int. Ed. Engl. 1992; 31: 772
- 10c Togo H, Katohgi M. Synlett 2001; 565
- 11a Lubriks D, Sokolovs I, Suna E. Org. Lett. 2011; 13: 4324
- 11b Pradal A, Toullec PY, Michelet V. Org. Lett. 2011; 13: 6086
- 11c Barluenga J, González-Bobes F, González JM. Angew. Chem. Int. Ed. 2002; 41: 2556
- 12a Qu X, Sun P, Li T, Mao J. Adv. Synth. Catal. 2011; 353: 1061
- 12b Evdokimov NM, Kornienko A, Magedov IV. Tetrahedron Lett. 2011; 52: 4327
- 12c Yu P, Zhang G, Chen F, Cheng J. Tetrahedron Lett. 2012; 53: 4588
- 12d Williams TJ, Fairlamb IJ. S. Tetrahedron Lett. 2013; 54: 2906
- 13 Fu Z, Xiong Q, Zhang W, Li Z, Cai H. Tetrahedron Lett. 2015; 56: 123
- 14 General Procedure (Preparation of 2): A mixture of aryliodine(III) diacetate 1 (0.2 mmol), K2CO3 (110.6 mg, 0.8 mmol, 4 equiv), Pd(OAc)2 (4.5 mg, 0.02 mmol, 10 mol%) and DMF (2 mL) was stirred at 110 °C for 2 h. After cooling to r.t., the reaction mixtures were diluted with H2O (10 mL) and filtered through a pad of silica gel that was then washed with Et2O (3 × 10 mL). The combined organic phase was washed with brine (2 × 20 mL), dried over Na2SO4, filtered and concentrated in vacuo. The residue was then purified by flash chromatography on silica gel to provide the corresponding product. The product was characterized by GC–MS and NMR spectroscopy.