Synthesis 2015; 47(12): 1716-1725
DOI: 10.1055/s-0034-1380360
paper
© Georg Thieme Verlag Stuttgart · New York

Iron-Catalyzed Oxidative C–C and C–O Coupling of Halophenols to α-Substituted β-Keto Esters

Almog Regev
Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel   Email: pappod@bgu.ac.il
,
Hadas Shalit
Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel   Email: pappod@bgu.ac.il
,
Doron Pappo*
Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel   Email: pappod@bgu.ac.il
› Author Affiliations
Further Information

Publication History

Received: 08 January 2015

Accepted: 17 February 2015

Publication Date:
26 March 2015 (online)


Abstract

The iron-catalyzed oxidative cross-coupling of halophenols to α-substituted β-keto esters takes place through one of two modes: oxidative C–C coupling or oxidative C–O coupling. A mechanistic investigation revealed that the chemoselectivity of these reactions is determined by the electronic and steric properties of the two coupling partners.

Supporting Information

 
  • References

    • 1a Jia F, Li Z. Org. Chem. Front. 2014; 1: 194
    • 1b Liu Q, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2013; 52: 13871
    • 1c Groves JT. J. Inorg. Biochem. 2006; 100: 434
    • 2a Enthaler S, Junge K, Beller M. Angew. Chem. Int. Ed. 2008; 47: 3317
    • 2b Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev. 2004; 104: 6217
    • 3a Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 3b Scheuermann CJ. Chem. Asian J. 2010; 5: 436
    • 3c Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 3d Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 3672
    • 3e Li Z, Li C.-J. J. Am. Chem. Soc. 2004; 126: 11810
    • 3f Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 3g Li Z, Bohle DS, Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 8928
    • 4a Kshirsagar UA, Parnes R, Goldshtein H, Ofir R, Zarivach R, Pappo D. Chem. Eur. J. 2013; 19: 13575
    • 4b Guo X, Yu R, Li H, Li Z. J. Am. Chem. Soc. 2009; 131: 17387
  • 5 Parnes R, Kshirsagar UA, Werbeloff A, Regev C, Pappo D. Org. Lett. 2012; 14: 3324
  • 6 Guo X, Li W, Li Z. Eur. J. Org. Chem. 2010; 2010: 5787
    • 7a Kshirsagar UA, Regev C, Parnes R, Pappo D. Org. Lett. 2013; 15: 3174
    • 7b Huang Z, Jin L, Feng Y, Peng P, Yi H, Lei A. Angew. Chem. Int. Ed. 2013; 52: 7151
    • 8a Vuluga D, Legros J, Crousse B, Slawin AM. Z, Laurence C, Nicolet P, Bonnet-Delpon D. J. Org. Chem. 2011; 76: 1126
    • 8b Shuklov IA, Dubrovina NV, Börner A. Synthesis 2007; 2925
    • 8c Berkessel A, Adrio JA, Hüttenhain D, Neudörfl JM. J. Am. Chem. Soc. 2006; 128: 8421
    • 8d Berkessel A, Adrio JA. J. Am. Chem. Soc. 2006; 128: 13412
    • 8e Bégué J.-P, Bonnet-Delpon D, Crousse B. Synlett 2004; 18
    • 8f de Visser SP, Kaneti J, Neumann R, Shaik S. J. Org. Chem. 2003; 68: 2903
  • 9 Gaster E., Vainer Y., Regev A., Narute S., Sudheendran K., Werbeloff A., Shalit H., Pappo D.; Angew. Chem. Int. Ed.; 2015; DOI: 10.1002/anie.201409694.
  • 10 Terent’ev AO, Borisov DA, Yaremenko IA, Chernyshev VV, Nikishin GI. J. Org. Chem. 2010; 75: 5065
    • 11a Fürstner A, Stelzer F, Rumbo A, Krause H. Chem. Eur. J. 2002; 8: 1856
    • 11b Lytollis W, Scannell RT, An H, Murty VS, Reddy KS, Barr JR, Hecht SM. J. Am. Chem. Soc. 1995; 117: 12683
  • 12 Brady JD, Sadler IH, Fry SC. Phytochemistry 1998; 47: 349
    • 13a Borges dos Santos RM, Martinho Simões JA. J. Phys. Chem. Ref. Data 1998; 27: 707
    • 13b Wright JS, Johnson ER, DiLabio GA. J. Am. Chem. Soc. 2001; 123: 1173
    • 13c Klein E, Lukeš V. Chem. Phys. 2006; 330: 515
  • 14 Wu Y.-D, Lai DK. W. J. Org. Chem. 1996; 61: 7904