Synthesis 2015; 47(19): 3043-3048
DOI: 10.1055/s-0034-1380438
paper
© Georg Thieme Verlag Stuttgart · New York

Biomimetic Approaches Employing the Ugi Five-Center Four-Component Reaction for Synthesis of the Right-Hand Portion of Halichonadin Q and the Central Part of Halichonadin M

Rika Mimura
a   Faculty of Science, Kochi University, Akebono-cho Kochi 780-8520, Japan   Email: ichikawa@kochi-u.ac.jp
,
Ayumi Kitamori
a   Faculty of Science, Kochi University, Akebono-cho Kochi 780-8520, Japan   Email: ichikawa@kochi-u.ac.jp
,
Akifumi Ikeda
a   Faculty of Science, Kochi University, Akebono-cho Kochi 780-8520, Japan   Email: ichikawa@kochi-u.ac.jp
,
Toshiya Masuda
b   Faculty of Integrated Arts and Sciences, University of Tokushima, Tokushima 770-8502, Japan
,
Keiji Nakano
a   Faculty of Science, Kochi University, Akebono-cho Kochi 780-8520, Japan   Email: ichikawa@kochi-u.ac.jp
,
Hiyoshizo Kotsuki
a   Faculty of Science, Kochi University, Akebono-cho Kochi 780-8520, Japan   Email: ichikawa@kochi-u.ac.jp
,
Yoshiyasu Ichikawa*
a   Faculty of Science, Kochi University, Akebono-cho Kochi 780-8520, Japan   Email: ichikawa@kochi-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 07 April 2015

Accepted after revision 11 May 2015

Publication Date:
09 July 2015 (online)


Abstract

One-pot syntheses of models of the right-hand portion and the central part of the respective structures of halichonadins Q and M, using the Ugi five-center four-component reaction (U-5C-4CR), were executed. The biomimetic strategy employed in these routes demonstrates the feasibility of pathways we have proposed for the biosynthesis of marine organisms.

Supporting Information

 
  • References

    • 1a Ichikawa Y. Chem. Lett. 1990; 1347
    • 1b Ichikawa Y. Synlett 1991; 715
    • 1c Ichikawa Y. J. Chem. Soc., Perkin Trans. 1 1992; 2135
    • 1d Ichikawa Y, Yamazaki M, Isobe M. J. Chem. Soc., Perkin Trans. 1 1993; 2429
    • 1e Ichikawa Y, Matsuda Y, Okumura K, Nakamura M, Masuda T, Kotsuki H, Nakano K. Org. Lett. 2011; 13: 2520
  • 2 Saito K, Nishimori A, Kotsuki H, Nakano K, Ichikawa Y. Synlett 2013; 24: 757
  • 3 Saito K, Nishimori A, Mimura R, Nakano K, Kotsuki H, Masuda T, Ichikawa Y. Eur. J. Org. Chem. 2013; 2013, 7041
    • 4a Ugi I, Steinbrückner C. Chem. Ber. 1961; 94: 2802
    • 4b Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
  • 5 Tanaka N, Suto S, Asai M, Kusama T, Takahashi-Nakaguchi A, Gonoi T, Fromont J, Kobayash Ji. Heterocycles 2015; 90: 173
  • 6 Suto S, Tanaka N, Fromont J, Kobayash Ji. Tetrahedron Lett. 2011; 52: 3470
    • 7a Demharter A, Hörl W, Herdtweck E, Ugi I. Angew. Chem., Int. Ed. Engl. 1996; 35: 173
    • 7b Ugi I, Demharter A, Hörl W, Schmid T. Tetrahedron 1996; 52: 11657
  • 8 For comparison of the 1H and 13C NMR data sets of the IDA methyl ester moiety in natural halichonadin Q (1) with those in the tert-butyl and menthyl analogues 7 and 10a, see the Supporting Information.
  • 9 Speziale AJ, Jaworski EG. J. Org. Chem. 1960; 25: 728
  • 10 Garro-Helion F, Merzouk A, Guibe F. J. Org. Chem. 1993; 58: 6109
  • 11 Although we observed the formation of 16 by TLC, a serious problem in separating a by-product having an Rf value similar to that of 16 hampered further optimization of this process.
  • 12 See the Supporting Information for the comparison of the 1H and 13C NMR data sets of the IDA methyl ester moiety in halichonadin M (2) with those in 16 and 19.
    • 13a Avilés E, Rodríguez AD. Org. Lett. 2010; 12: 5290
    • 13b Tanaka N, Suto S, Ishiyama H, Kubota T, Yamano A, Shiro M, Fromont J, Kobayashi J. Org. Lett. 2012; 14: 3498