Synthesis 2015; 47(13): 1851-1860
DOI: 10.1055/s-0034-1380496
paper
© Georg Thieme Verlag Stuttgart · New York

One-Pot Synthesis of Quinolin-4(1H)-one Derivatives by a Sequential Michael Addition–Elimination/Palladium-Catalyzed Buchwald–Hartwig Amination Reaction

Yinghua Wang
Department of Chemistry and Chemical Engineering, College of Science, Northeast Forestry University, Harbin 150040, P. R. of China   Email: jspeng1998@nefu.edu.cn   Email: 080122@nefu.edu.cn
,
Hanyu Liang
Department of Chemistry and Chemical Engineering, College of Science, Northeast Forestry University, Harbin 150040, P. R. of China   Email: jspeng1998@nefu.edu.cn   Email: 080122@nefu.edu.cn
,
Chunxia Chen*
Department of Chemistry and Chemical Engineering, College of Science, Northeast Forestry University, Harbin 150040, P. R. of China   Email: jspeng1998@nefu.edu.cn   Email: 080122@nefu.edu.cn
,
Deqiang Wang
Department of Chemistry and Chemical Engineering, College of Science, Northeast Forestry University, Harbin 150040, P. R. of China   Email: jspeng1998@nefu.edu.cn   Email: 080122@nefu.edu.cn
,
Jinsong Peng*
Department of Chemistry and Chemical Engineering, College of Science, Northeast Forestry University, Harbin 150040, P. R. of China   Email: jspeng1998@nefu.edu.cn   Email: 080122@nefu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 06 January 2015

Accepted after revision: 03 March 2015

Publication Date:
26 March 2015 (online)


Abstract

A convenient approach has been developed for the construction of quinolin-4(1H)-one frameworks, starting from (Z)-β-chlorovinyl aromatic ketones and amines. Intermolecular Michael addition of an amine to a (Z)-β-chlorovinyl ketone was followed by elimination of a chloride anion to give enamine intermediates, with full retention of the initial Z-configuration. The enamine intermediates were transformed into quinolin-4(1H)-one products by a palladium-catalyzed intramolecular N-arylation in a tandem one-pot manner, with good to excellent yields.

Supporting Information

 
  • References

    • 1a Höfle G, Kunze B. J. Nat. Prod. 2008; 71: 1843
    • 1b Abe H, Kawada M, Inoue H, Ohba S.-i, Nomoto A, Watanabe T, Shibasaki M. Org. Lett. 2013; 15: 2124
    • 1c Jadulco RC, Pond CD, Van Wagoner RM, Koch M, Gideon OG, Matainaho TK, Piskaut P, Barrows LR. J. Nat. Prod. 2014; 77: 183
    • 2a Krishnamurthy M, Gooch BD, Beal PA. Org. Lett. 2004; 6: 63
    • 2b Krishnamurthy M, Simon K, Orendt AM, Beal PA. Angew. Chem. Int. Ed. 2007; 46: 7044
    • 2c Cross RM, Manetsch R. J. Org. Chem. 2010; 75: 8654
    • 2d Audisio D, Messaoudi S, Peyrat J.-F, Brion J.-D, Alami M. J. Org. Chem. 2011; 76: 4995
    • 2e Chen F, Feng Z, He C.-Y, Wang H.-Y, Guo Y.-l, Zhang X. Org. Lett. 2012; 14: 1176
    • 2f Klier L, Bresser T, Nigst TA, Karaghiosoff K, Knochel P. J. Am. Chem. Soc. 2012; 134: 13584
    • 3a Chen Y.-L, Fang K.-C, Sheu J.-Y, Hsu S.-L, Tzeng C.-C. J. Med. Chem. 2001; 44: 2374
    • 3b Asahina Y, Iwase K, Iinuma F, Hosaka M, Ishizaki T. J. Med. Chem. 2005; 48: 3194
    • 3c Odagiri T, Inagaki H, Sugimoto Y, Nagamochi M, Miyauchi RN, Kuroyanagi J, Kitamura T, Komoriya S, Takahashi H. J. Med. Chem. 2013; 56: 1974
    • 4a Li L, Wang H.-K, Kuo S.-C, Wu T.-S, Mauger A, Lin CM, Hamel E, Lee K.-H. J. Med. Chem. 1994; 37: 3400
    • 4b Nakamura S, Kozuka M, Bastow KF, Tokuda H, Nishino H, Suzuki M, Tatsuzaki J, Natschke SL. M, Kuo S.-C, Lee K.-H. Bioorg. Med. Chem. 2005; 13: 4396
    • 4c Chang Y.-H, Hsu M.-H, Wang S.-H, Huang L.-J, Qian K, Morris-Natschke SL, Hamel E, Kuo S.-C, Lee K.-H. J. Med. Chem. 2009; 52: 4883
    • 5a Cross RM, Monastyrskyi A, Mutka TS, Burrows JN, Kyle DE, Manetsch R. J. Med. Chem. 2010; 53: 7076
    • 5b Cross RM, Namelikonda NK, Mutka TS, Luong L, Kyle DE, Manetsch R. J. Med. Chem. 2011; 54: 8321
    • 5c Zhang Y, Clark JA, Connelly MC, Zhu F, Min J, Guiguemde WA, Pradhan A, Iyer L, Furimsky A, Gow J, Parman T, Mazouni FE, Phillips MA, Kyle DE, Mirsalis J, Guy RK. J. Med. Chem. 2012; 55: 4205
    • 6a Sui Z, Nguyen VN, Altom J, Fernandez J, Hilliard JJ, Bernstein JI, Barrett JF, Ohemeng KA. Eur. J. Med. Chem. 1999; 34: 381
    • 6b Xia Y, Yang Z.-Y, Xia P, Hackl T, Hamel E, Mauger A, Wu J.-H, Lee K.-H. J. Med. Chem. 2001; 44: 3932
    • 6c Hadjeri M, Peiller EL, Beney C, Deka N, Lawson MA, Dumontet C, Boumendjel A. J. Med. Chem. 2004; 47: 4964
    • 7a Cecchetti V, Parolin C, Moro S, Pecere T, Filipponi E, Calistri A, Tabarrini O, Gatto B, Palumbo M, Fravolini A, Palu G. J. Med. Chem. 2000; 43: 3799
    • 7b Sato M, Motomura T, Aramaki H, Matsuda T, Yamashita M, Ito Y, Kawakami H, Matsuzaki Y, Watanabe W, Yamataka K, Ikeda S, Kodama E, Matsuoka M, Shinkai H. J. Med. Chem. 2006; 49: 1506
    • 7c Pasquini S, Mugnaini C, Tintori C, Botta M, Trejos A, Arvela RK, Larhed M, Witvrouw M, Michiels M, Christ F, Debyser Z, Corelli F. J. Med. Chem. 2008; 51: 5125
    • 8a Reitsema RH. Chem. Rev. 1948; 43: 43
    • 8b López SE, Rebollo O, Salazar J, Charris JE, Yánez C. J. Fluorine Chem. 2003; 120: 71
    • 8c Boteva AA, Krasnykh OP. Chem. Heterocycl. Compd. (Engl. Transl.) 2009; 45: 757
    • 8d Romek A, Opatz T. Eur. J. Org. Chem. 2010; 5841
    • 8e Liu Q.-L, Li Q.-L, Fei X.-D, Zhu Y.-M. ACS Comb. Sci. 2011; 13: 19
    • 8f Zhao J, Zhao Y, Fu H. Org. Lett. 2012; 14: 2710
    • 8g Iaroshenko VO, Knepper I, Zahid M, Dudkin S, Kuzora R, Villinger A, Langer P. Org. Biomol. Chem. 2012; 10: 2955
    • 8h Shao J, Huang X, Hong X, Liu B, Xu B. Synthesis 2012; 44: 1798
    • 8i Victor NJ, Muraleedharan KM. Adv. Synth. Catal. 2014; 356: 3600
  • 9 Camps R. Ber. Dtsch. Chem. Ges. 1899; 32: 3228
    • 10a Li JJ. Name Reactions: A Collection of Detailed Reaction Mechanisms. 2nd ed. Springer; Berlin: 2003: 81
    • 10b Zewge D, Chen C.-y, Deer C, Dormer PG, Hughes DL. J. Org. Chem. 2007; 72: 4276
    • 11a Niementowski S. Ber. Dtsch. Chem. Ges. 1894; 27: 1394
    • 11b Fuson RC, Burness DM. J. Am. Chem. Soc. 1946; 68: 1270
    • 11c Son JK, Kim SI, Jahng Y. Heterocycles 2001; 55: 1981
    • 12a Kalinin VN, Shostakovsky MV, Ponomaryov AB. Tetrahedron Lett. 1992; 33: 373
    • 12b Torii S, Okumoto H, Xu LH, Sadakane M, Shostakovsky MV, Ponomaryov AB, Kalinin VN. Tetrahedron 1993; 49: 6773
    • 12c Haddad N, Tan J, Farina V. J. Org. Chem. 2006; 71: 5031
    • 12d Huang J, Chen Y, King AO, Dilmeghani M, Larsen RD, Faul MM. Org. Lett. 2008; 10: 2609
    • 12e Zhao T, Xu B. Org. Lett. 2010; 12: 212
    • 12f Takahashi I, Morita F, Kusagaya S, Fukaya H, Kitagawa O. Tetrahedron: Asymmetry 2012; 23: 1657
    • 12g Iaroshenko VO, Knepper I, Zahid M, Kuzora R, Dudkin S, Villinger A, Langer P. Org. Biomol. Chem. 2012; 10: 2955
    • 12h Fei X.-D, Zhou Z, Li W, Zhu Y.-M, Shen J.-K. Eur. J. Org. Chem. 2012; 3001
    • 12i Iaroshenko VO, Zahid M, Mkrtchyan S, Gevorgyan A, Altenburger K, Knepper I, Villinger A, Sosnovskikh VY, Langer P. Tetrahedron 2013; 69: 2309
  • 14 Seppänen O, Muuronen M, Helaja J. Eur. J. Org. Chem. 2014; 4044
    • 15a Peng J, Shang G, Chen C, Miao Z, Li B. J. Org. Chem. 2013; 78: 1242
    • 15b Chen C, Shang G, Zhou J, Yu Y, Li B, Peng J. Org. Lett. 2014; 16: 1872
    • 15c Peng J, Zhao Y, Zhou J, Ding Y, Chen C. Synthesis 2014; 46: 2051
    • 16a Wang B, Wang S, Li P, Wang L. Chem. Commun. 2010; 46: 5891
    • 16b Gandeepan P, Parthasarathy K, Su T.-H, Cheng C.-H. Adv. Synth. Catal. 2012; 354: 457
    • 17a Pohland AE, Benson WR. Chem. Rev. 1966; 66: 161
    • 17b Gooßen LJ, Rodríguez N, Gooßen K. Angew. Chem. Int. Ed. 2009; 48: 9592 ; Angew. Chem. 2009, 121, 9770

      For selected examples in which β-halovinyl ketones or analogues are used as electrophilic coupling reagents, see:
    • 18a Xiang JS, Mahadevan A, Fuchs PL. J. Am. Chem. Soc. 1996; 118: 4284
    • 18b Paley RS, de Dios A, Estroff LA, Lafontaine JA, Montero C, McCulley DJ, Rubio MB, Ventura MP, Weers HL, Fernández de la Pradilla R, Castro S, Dorado R, Morente M. J. Org. Chem. 1997; 62: 6326
    • 18c Xi C, Kotora M, Nakajima K, Takahashi T. J. Org. Chem. 2000; 65: 945
    • 18d Kotora M, Matsumura H, Gao G, Takahashi T. Org. Lett. 2001; 3: 3467
    • 18e Haack T, Kurtkaya S, Snyder JP, Georg GI. Org. Lett. 2003; 5: 5019
    • 18f Bekele T, Brunette SR, Lipton MA. J. Org. Chem. 2003; 68: 8471
    • 18g Bates CG, Saejueng P, Doherty MQ, Venkataraman D. Org. Lett. 2004; 6: 5005
    • 18h Liang G, Miller AK, Trauner D. Org. Lett. 2005; 7: 819
    • 18i Iwai T, Fujihara T, Terao J, Tsuji Y. J. Am. Chem. Soc. 2012; 134: 1268

      For selected examples of syntheses of nitrogen heterocycles through Pd-catalyzed double aminations, see:
    • 19a Willis MC, Brace GN, Holmes IP. Angew. Chem. Int. Ed. 2005; 44: 403
    • 19b Willis MC, Brace GN, Findlay TJ. K, Holmes IP. Adv. Synth. Catal. 2006; 348: 851
    • 19c Fletcher AJ, Bax MN, Willis MC. Chem. Commun. 2007; 4764
    • 19d Kuwahara A, Nakano K, Nozaki K. J. Org. Chem. 2005; 70: 413
    • 19e Zhang X, Yang Y, Liang Y. Tetrahedron Lett. 2012; 53: 6406
    • 19f Ueno A, Kitawaki T, Chida N. Org. Lett. 2008; 10: 1999
    • 19g Zhou Y, Verkade JG. Adv. Synth. Catal. 2010; 352: 616
    • 20a Chen Q.-H, Geng Z. Chin. Sci. Bull. 1993; 38: 791
    • 20b Esteban J, Costa AM, Gómez À, Vilarrasa J. Org. Lett. 2008; 10: 65
    • 20c Kashiwabara T, Fuse K, Hua R, Tanaka M. Org. Lett. 2008; 10: 5469
    • 20d Souibgui A, Gaucher A, Marrot J, Bourdreux F, Aloui F, Ben Hassine B, Prim D. Tetrahedron 2014; 70: 3042
    • 20e Clayden J, Greeves N, Warren S, Wothers P. Organic Chemistry . Oxford University Press; Oxford: 2001. Chap. 23, 585
    • 21a Eaton PE, Stubbs CE. J. Am. Chem. Soc. 1967; 89: 5722
    • 21b Kim HY, Li J.-Y, Oh K. J. Org. Chem. 2012; 77: 11132
  • 23 Shim SC, Chae SA, Lee DY, Lim HS, Kalinin VN. J. Korean Chem. Soc. 1994; 38: 774