Synthesis 2015; 47(13): 1899-1904
DOI: 10.1055/s-0034-1380518
paper
© Georg Thieme Verlag Stuttgart · New York

N-Bromosuccinimide as a Brominating Agent for the Transformation of N-H (or N-Benzyl) Ketoaziridines into Oxazoles

Heshmat A. Samimi*
Faculty of Science, Department of Chemistry, Shahrekord University, 115, Shahrekord, PO Box 115, Iran   Email: samimi-h@sci.sku.ac.ir
,
Farkhondeh Dadvar
Faculty of Science, Department of Chemistry, Shahrekord University, 115, Shahrekord, PO Box 115, Iran   Email: samimi-h@sci.sku.ac.ir
› Author Affiliations
Further Information

Publication History

Received: 15 January 2015

Accepted after revision: 09 March 2015

Publication Date:
13 April 2015 (online)


Abstract

A novel procedure for the direct synthesis of 2,5-diarylox­azoles starting from N-H ketoaziridines is described. The method proceeds via the in situ formation of N-bromoketoaziridines in the presence of N-bromosuccinimide followed by the generation of intermediate azomethine ylides. A plausible mechanism for this transformation is proposed.

 
  • References

    • 1a Osborn HM. I, Sweeney J. Tetrahedron: Asymmetry 1997; 8: 1693
    • 1b Hu XE. Tetrahedron 2004; 60: 2701
    • 1c Sweeney JB. Chem. Soc. Rev. 2002; 31: 247
    • 1d Stanković S, D’Hooghe M, Catak S, Eum H, Waroquier M, Van Speybroeck V, De Kimpe N, Ha H.-J. Chem. Soc. Rev. 2012; 41: 643
    • 2a Watson ID. G, Yu L, Yudin AK. Acc. Chem. Res. 2006; 39: 194
    • 2b Baeg JO, Bensimo C, Alper H. J. Am. Chem. Soc. 1995; 117: 4700
    • 2c Ungureanu I, Klotz P, Mann A. Angew. Chem. Int. Ed. 2000; 39: 4615
    • 2d Munegumi T, Azumaya I, Kato T, Masu H, Saito S. Org. Lett. 2006; 8: 379
    • 2e Wender PA, Strand D. J. Am. Chem. Soc. 2009; 131: 7528
    • 3a Heine HW, Peavy R. Tetrahedron Lett. 1965; 6: 3123
    • 3b Padwa A, Hamilton L. Tetrahedron Lett. 1965; 6: 4363
    • 3c Huisgen R, Scheer W, Szeimies G, Huber H. Tetrahedron Lett. 1966; 7: 397
    • 3d Huisgen R, Scheer W, Huber H. J. Am. Chem. Soc. 1967; 89: 1753
    • 3e Texier F, Carrie R, Jaz J. J. Chem. Soc., Chem. Commun. 1972; 199
    • 3f Attanasi OA, Davoli P, Favi G, Filippone P, Forni A, Moscatelli G, Prati F. Org. Lett. 2007; 9: 3461
    • 3g Pankova AS, Voronin VV, Kuznetsov MA. Tetrahedron Lett. 2009; 50: 5990
    • 3h Zhao W, Lu Z, Wulff WD. J. Org. Chem. 2014; 79: 1008
    • 3i Wang S, Zhu X, Chai Z, Wang S. Org. Biomol. Chem. 2014; 12: 1351
    • 3j Vaultier M, Carrié R. Tetrahedron Lett. 1978; 19: 1195
    • 3k Pohlhaus PD, Bowman RK, Johnson JS. J. Am. Chem. Soc. 2004; 126: 2294
    • 3l Wu X, Lei L, Zhang J. Chem. Commun. 2011; 47: 7824
    • 3m Wang S, Zhu Y, Wang Y, Lu P. Org. Lett. 2009; 11: 2615
    • 3n Schirmeister T. Liebigs Ann. 1997; 1895
    • 3o Gomes PJ. S, Nunes CM, Pais AA. C. C, Pinho e Melo TM. V. D, Arnaut LG. Tetrahedron Lett. 2006; 47: 5475
    • 4a Felix D, Eschenmoser A. Angew. Chem., Int. Ed. Engl. 1968; 7: 224
    • 4b Zhong Y.-L, Bulger PG. Org. Synth. 2010; 87: 8
    • 4c Claxton GP, Allen L, Grisar JM. Org. Synth. 1977; 56: 118
    • 4d Padwa A, Battisti A. J. Am. Chem. Soc. 1971; 36: 230
    • 4e Gassman DP. G, Dygos DK. J. Am. Chem. Soc. 1969; 91: 1543
    • 4f Gassman PG, Dygos DK, Trent JE. J. Am. Chem. Soc. 1970; 92: 2084
    • 4g Gentiluc L, Grijzen Y, Thijs L, Zwanenburg B. Tetrahedron Lett. 1995; 36: 4665
    • 4h Legters J, Thijs L, Zwanenburg B. Recl. Trav. Chim. Pays-Bas 1992; 111: 75
    • 5a Samimi HA, Mohammadi S. Synlett 2013; 24: 223
    • 5b Keni M, Tepe JJ. J. Org. Chem. 2005; 70: 4211
    • 5c Beletskii EV, Kuznetsov MA. Russ. J. Org. Chem. 2009; 45: 1229
    • 5d Beccalli EM, Borsini E, Broggini G, Palmisano G, Sottocornola S. J. Org. Chem. 2008; 73: 4746
    • 5e Wang S.-X, Wang M.-X, Wang D.-X, Zhu J. Eur. J. Org. Chem. 2007; 4076
    • 5f Kelly TR, Lang F. J. Org. Chem. 1996; 61: 4623
    • 5g Phillips AJ, Uto Y, Wipf P, Reno MJ, Williams DR. Org. Lett. 2000; 2: 1165
    • 5h Pusch S, Opatz T. Org. Lett. 2014; 16: 5430
    • 5i Padwa A, Eisenhardt W. Chem. Commun. 1968; 380
    • 5j Padwa A, Eisenhardt W. J. Am. Chem. Soc. 1968; 90: 2442
    • 5k Padwa A, Eisenhardt W. J. Am. Chem. Soc. 1971; 93: 1400
    • 5l Lown JW, Moser JP. J. Chem. Soc., Chem. Commun. 1970; 247
    • 5m Kuznetsov MA, Voronin VV. Chem. Heterocycl. Compd. 2011; 47: 173
    • 5n Padwa A, Eastman D, Hamilton L. J. Org. Chem. 1968; 33: 1317
    • 6a Samimi HA, Mamaghani M, Tabatabeian K. J. Heterocycl. Chem. 2008; 45: 1765
    • 6b Mamaghani M, Tabatabeian K, Samimi HA. Z. Kristallogr. - New Cryst. Struct. 2008; 223: 390
    • 6c Samimi HA, Mohammadi S. J. Iran Chem. Soc. 2013; 11: 69
    • 6d Samimi HA, Kiyani H, Shams Z. J. Chem. Res. 2013; 282
    • 6e Samimi H. A., Bohari M. Y., Hiedari Z., Narimani L.; J. Iran Chem. Soc., in press.
    • 6f Samimi HA, Bohari MY. J. Chem. Res. 2014; 38: 358
    • 6g Samimi HA, Mohammadi S. J. Iran Chem. Soc. 2014; 11: 69
    • 6h Samimi HA, Shams Z. J. Iran Chem. Soc. 2014; 11: 979
    • 6i Samimi HA, Bohari MY, Soltani M. J. Iran Chem. Soc. 2014; 11: 1467
    • 6j Samimi HA, Salehi E, Dadvar F. J. Chem. Res. 2014; 38: 731
    • 6k Samimi HA, Bohari MY, Saberi F. Synthesis 2015; 47: 129
    • 7a Gabriel S. Chem. Ber. 1888; 21: 1049
    • 7b Cromwell NH, Hoeksema H. J. Am. Chem. Soc. 1949; 71: 708
    • 7c Armstrong A, Baxter CA, Lamont SG, Pape AR, Wincewicz R. Org. Lett. 2007; 9: 351
    • 7d Armstrong A, Carbery DR, Lamont SG, Pape AR, Wincewicz R. Synlett 2006; 2504
    • 7e Ikeda I, Machii Y, Okahara M. Synthesis 1980; 650
    • 7f Xu J, Jiao P. J. Chem. Soc., Perkin Trans. 1 2002; 1491
    • 7g Shen Y.-M, Zhao M.-X, Xu J, Shi Y. Angew. Chem. Int. Ed. 2006; 45: 8005
  • 8 Ramaiah D, Muneer M, Gopidas KR, Das PK, Rath NP, George MV. J. Org. Chem. 1996; 61: 4240